[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165940
G.f.: Sum_{n>=0} a(n)*x^n/2^(n^2+n) = exp( Sum_{n>=1} x^n/[n*2^(n^2)] ).
0
1, 2, 10, 152, 7684, 1352096, 852120928, 1960591940480, 16697154282192928, 531801639623740649984, 63854080509077223292639744, 29089348119991257994736112048128
OFFSET
0,2
COMMENTS
Conjectured to consist entirely of integers.
EXAMPLE
G.f.: 1 + 2*x/2^2 + 10*x^2/2^6 + 152*x^3/2^12 + 7684*x^4/2^20 +...
= exp( x/2 + x^2/(2*2^4) + x^3/(3*2^9) + x^4/(4*2^16) +... ).
Evaluated at x=1:
Sum_{n>=0} a(n)/2^(n^2+n) = 1.7021716250154556344906565654972646...
PROG
(PARI) {a(n)=2^(n^2+n)*polcoeff(exp(sum(m=1, n+1, 2^(-m^2)*x^m/m)+x*O(x^n)), n)}
CROSSREFS
Cf. A155200.
Sequence in context: A086619 A294373 A194026 * A007080 A231517 A134088
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 01 2009
STATUS
approved