[go: up one dir, main page]

login
A165626
Number of 5-regular graphs (quintic graphs) on 2n vertices.
12
1, 0, 0, 1, 3, 60, 7849, 3459386, 2585136741, 2807105258926, 4221456120848125, 8516994772686533749, 22470883220896245217626, 75883288448434648617038134, 322040154712674550886226182668
OFFSET
0,5
COMMENTS
Because the triangle A051031 is symmetric, a(n) is also the number of (2n-6)-regular graphs on 2n vertices.
FORMULA
Euler transform of A006821.
MATHEMATICA
A006821 = Cases[Import["https://oeis.org/A006821/b006821.txt", "Table"], {_, _}][[All, 2]];
(* EulerTransform is defined in A005195 *)
EulerTransform[Rest @ A006821] (* Jean-François Alcover, Dec 04 2019, updated Mar 18 2020 *)
CROSSREFS
5-regular simple graphs: A006821 (connected), A165655 (disconnected), this sequence (not necessarily connected).
Regular graphs A005176 (any degree), A051031 (triangular array), specified degrees: A000012 (k=0), A059841 (k=1), A008483 (k=2), A005638 (k=3), A033301 (k=4), this sequence (k=5), A165627 (k=6), A165628 (k=7), A180260 (k=8).
Sequence in context: A036770 A201699 A006821 * A120307 A022915 A093883
KEYWORD
nonn,hard,more
AUTHOR
Jason Kimberley, Sep 22 2009
EXTENSIONS
Regular graphs cross-references edited by Jason Kimberley, Nov 07 2009
a(9) from Jason Kimberley, Nov 24 2009
a(10)-a(14) from Andrew Howroyd, Mar 10 2020
STATUS
approved