[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165521
The number of 4321-avoiding separable permutations of length n.
3
1, 1, 2, 6, 21, 73, 243, 785, 2504, 7968, 25389, 81033, 258873, 827263, 2643616, 8447300, 26990489, 86236655, 275531223, 880341121, 2812760102, 8987010878, 28714292671, 91744697633, 293132350135, 936583428475, 2992465580300
OFFSET
0,3
LINKS
D. Callan, T. Mansour, Enumeration of small Wilf classes avoiding 1324 and two other 4-letter patterns, arXiv:1705.00933 [math.CO] (2017), Table 2 No 102.
V. Vatter, Finding regular insertion encodings for permutation classes, Journal of Symbolic Computation, Volume 47, Issue 3, March 2012, Pages 259-265.
FORMULA
G.f.: (1-x)^3*(1 -3*x +2*x^2 -x^3)/ (1 -7*x +19*x^2 -28*x^3 +23*x^4 -12*x^5 +4*x^6 -x^7).
The growth rate (limit of the n-th root of a(n)) is approximately 3.19508.
EXAMPLE
For n=6, there are 394 separable permutations; 243 of them avoid 4321.
MATHEMATICA
CoefficientList[Series[(1 - x)^3*(1 -3*x +2*x^2 -x^3)/(1 -7*x +19*x^2 - 28*x^3 +23*x^4 -12*x^5 +4*x^6 -x^7), {x, 0, 50}], x] (* G. C. Greubel, Oct 21 2018 *)
PROG
(PARI) x='x+O('x^50); Vec((1-x)^3*(1 -3*x +2*x^2 -x^3)/ (1 -7*x +19*x^2 -28*x^3 +23*x^4 -12*x^5 +4*x^6 -x^7)) \\ G. C. Greubel, Oct 21 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x)^3*(1 -3*x +2*x^2 -x^3)/ (1 -7*x +19*x^2 -28*x^3 +23*x^4 -12*x^5 +4*x^6 -x^7))); // G. C. Greubel, Oct 21 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Vincent Vatter, Sep 21 2009
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Dec 09 2015
STATUS
approved