[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165202
Expansion of (1+x)/(1 - x + x^2)^2.
6
1, 3, 3, -1, -6, -6, 1, 9, 9, -1, -12, -12, 1, 15, 15, -1, -18, -18, 1, 21, 21, -1, -24, -24, 1, 27, 27, -1, -30, -30, 1, 33, 33, -1, -36, -36, 1, 39, 39, -1, -42, -42, 1, 45, 45, -1, -48, -48, 1, 51, 51, -1, -54, -54, 1, 57, 57, -1, -60, -60, 1
OFFSET
0,2
FORMULA
a(n) = cos(Pi*n/3) + sin(Pi*n/3)*(2n/3 + 1)*sqrt(3).
a(n) = A099254(n) + A099254(n-1). - R. J. Mathar, May 02 2013
MATHEMATICA
LinearRecurrence[{2, -3, 2, -1}, {1, 3, 3, -1}, 70] (* G. C. Greubel, Jul 18 2019 *)
(-1)^Quotient[#-1, 3]{1, 1+#, #}[[Mod[#, 3, 1]]]&/@Range[0, 10] (* Federico Provvedi, Jul 18 2021 *)
PROG
(PARI) my(x='x+O('x^70)); Vec((1+x)/(1-x+x^2)^2) \\ G. C. Greubel, Jul 18 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( (1+x)/(1-x+x^2)^2 )); // G. C. Greubel, Jul 18 2019
(Sage) ((1+x)/(1-x+x^2)^2).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 18 2019
(GAP) a:=[1, 3, 3, -1];; for n in [5..70] do a[n]:=2*a[n-1]-3*a[n-2]+ 2*a[n-3] -a[n-4]; od; a; # G. C. Greubel, Jul 18 2019
CROSSREFS
Cf. A100050 (first differences).
Hankel transform of A165201.
Sequence in context: A174128 A131070 A295290 * A010468 A082009 A110640
KEYWORD
easy,sign
AUTHOR
Paul Barry, Sep 07 2009
STATUS
approved