Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Sep 08 2022 08:45:47
%S 4,30,33,34,48,49,52,59,60,66,96,113,115,134,146,155,163,169,175,180,
%T 193,196,200,206,211,235,251,274,288,300,302,304,330,336,338,350,354,
%U 358,368,373,381,399,412,419,430,436,438,440,491,506,536,542,552,579
%N Numbers n such that n-th digit (after decimal point) of e and of Euler-Mascheroni constant gamma are the same.
%H Harvey P. Dale, <a href="/A164820/b164820.txt">Table of n, a(n) for n = 1..1000</a>
%e e = 2.7182818284..., gamma = 0.5772156649...; fourth digit of e and fourth digit of gamma are both 2, hence 4 is in the sequence.
%p P:=proc(i) local a,b,c,d,n; a:=convert(evalf(gamma,1000),string); b:=convert(evalf(exp(1)-2,1000),string); for n from 2 by 1 to i do if substring(a,n)=substring(b,n) then print(n-1); fi; od; end: P(900);
%t With[{nn=600},Position[Thread[{Rest[RealDigits[E,10,nn+1][[1]]], RealDigits[ EulerGamma,10,nn][[1]]}],{x_,x_}]]//Flatten (* _Harvey P. Dale_, Oct 08 2017 *)
%o (Magma) m:=600; e:=Exp(One(RealField(m+1))); se:=IntegerToString(Round(10^m*(e-2))); g:=EulerGamma(RealField(m)); sg:=IntegerToString(Round(10^m*g)); [ a: a in [1..m] | se[a] eq sg[a] ]; // _Klaus Brockhaus_, Sep 03 2009
%Y Cf. A068394, A164819.
%K easy,nonn,base
%O 1,1
%A _Paolo P. Lava_ and _Giorgio Balzarotti_, Aug 27 2009
%E Edited and listed terms verified by _Klaus Brockhaus_, Sep 03 2009