[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164535
a(n) = 8*a(n-1) - 14*a(n-2) for n > 1; a(0) = 3, a(1) = 20.
3
3, 20, 118, 664, 3660, 19984, 108632, 589280, 3193392, 17297216, 93670240, 507200896, 2746223808, 14868977920, 80504690048, 435871829504, 2359908975360, 12777066189824, 69177803863552, 374543504250880
OFFSET
0,1
COMMENTS
Binomial transform of A164305. Fourth binomial transform of A164654. Inverse binomial transform of A164536.
FORMULA
a(n) = 8*a(n-1) - 14*a(n-2) for n > 1; a(0) = 3, a(1) = 20.
G.f.: (3-4*x)/(1-8*x+14*x^2).
a(n) = ((3+4*sqrt(2))*(4+sqrt(2))^n + (3-4*sqrt(2))*(4-sqrt(2))^n)/2.
MATHEMATICA
CoefficientList[Series[(3-4x)/(1-8x+14x^2), {x, 0, 25}], x] (* Harvey P. Dale, Feb 23 2011 *)
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((3+4*r)*(4+r)^n+(3-4*r)*(4-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 20 2009
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009
EXTENSIONS
Edited and extended beyond a(5) by Klaus Brockhaus, Aug 20 2009
STATUS
approved