OFFSET
0,1
COMMENTS
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..158
Index entries for linear recurrences with constant coefficients, signature (8, -14).
FORMULA
a(n) = 8*a(n-1) - 14*a(n-2) for n > 1; a(0) = 3, a(1) = 20.
G.f.: (3-4*x)/(1-8*x+14*x^2).
a(n) = ((3+4*sqrt(2))*(4+sqrt(2))^n + (3-4*sqrt(2))*(4-sqrt(2))^n)/2.
MATHEMATICA
CoefficientList[Series[(3-4x)/(1-8x+14x^2), {x, 0, 25}], x] (* Harvey P. Dale, Feb 23 2011 *)
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((3+4*r)*(4+r)^n+(3-4*r)*(4-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 20 2009
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009
EXTENSIONS
Edited and extended beyond a(5) by Klaus Brockhaus, Aug 20 2009
STATUS
approved