[go: up one dir, main page]

login
A153864
Triangle read by rows, A000012 * A153860 * (A066983 * 0^(n-k))
1
1, 1, 1, 2, 2, 1, 1, 2, 2, 3, 2, 2, 2, 6, 3, 1, 2, 2, 6, 6, 7, 2, 2, 2, 6, 6, 14, 9, 1, 2, 2, 6, 6, 14, 18, 17, 2, 2, 2, 6, 6, 14, 18, 34, 25, 1, 2, 2, 6, 6, 14, 18, 34, 50, 43, 2, 2, 2, 6, 6, 14, 18, 34, 50, 86, 67
OFFSET
0,4
COMMENTS
Row sums = A066629: (1, 2, 5, 8, 15, 24, 41, 66, 109,...).
Right border = A066983: (1, 1, 1, 3, 3, 7, 9, 17,...).
FORMULA
Triangle read by rows, A000012 * A153860 * (A066983 * 0^(n-k))
Given triangle A000012 * A153860 = partial sums of A153860 starting from the top.
(A066983 * 0^n-k) = an infinite lower triangular matrix with A066983 as the
main diagonal: (1, 1, 1, 3, 3, 7, 9, 17, 25,...) and the rest zeros.
EXAMPLE
First few rows of the triangle =
1;
1, 1;
2, 2, 1;
1, 2, 2, 3;
2, 2, 2, 6, 3;
1, 2, 2, 6, 6, 7;
2, 2, 2, 6, 6, 14, 9;
1, 2, 2, 6, 6, 14, 18, 17;
2, 2, 2, 6, 6, 14, 18, 34, 25;
1, 2, 2, 6, 6, 14, 18, 34, 50, 43;
...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Jan 03 2009
STATUS
approved