[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152729
a(n) = (n-2)^4 - a(n-1) - a(n-2), with a(1) = a(2) = 0.
5
0, 0, 1, 15, 65, 176, 384, 736, 1281, 2079, 3201, 4720, 6720, 9296, 12545, 16575, 21505, 27456, 34560, 42960, 52801, 64239, 77441, 92576, 109824, 129376, 151425, 176175, 203841, 234640, 268800, 306560, 348161, 393855, 443905, 498576, 558144
OFFSET
1,4
COMMENTS
a(n+2) - a(n-1) = n^4 - (n-1)^4 = A005917(n) for all n in Z. - Michael Somos, Sep 02 2018
FORMULA
G.f.: -x^3*(x+1)*(x^2+10*x+1) / ((x-1)^5*(x^2+x+1)). - Colin Barker, Oct 28 2014
a(n) = a(2 - n) for all n in Z. - Michael Somos, Sep 02 2018
EXAMPLE
0 + 0 + 1 = 1^4; 0 + 1 + 15 = 2^4; 1 + 15 + 65 = 3^4; ...
G.f. = x^3 + 15*x^4 + 65*x^5 + 176*x^6 + 384*x^7 + 736*x^8 + 1281*x^9 + ... - Michael Somos, Sep 02 2018
MATHEMATICA
k0=k1=0; lst={k0, k1}; Do[kt=k1; k1=n^4-k1-k0; k0=kt; AppendTo[lst, k1], {n, 1, 4!}]; lst
LinearRecurrence[{4, -6, 5, -5, 6, -4, 1}, {0, 0, 1, 15, 65, 176, 384}, 50] (* G. C. Greubel, Sep 01 2018 *)
a[ n_] := With[ {m = Max[n, 2 - n]}, SeriesCoefficient[ x^3 (1 + x) (1 + 10 x + x^2) / ((1 - x)^5 (1 + x + x^2)), {x , 0, m}]]; (* Michael Somos, Sep 02 2018 *)
PROG
(PARI) concat([0, 0], Vec(-x^3*(x+1)*(x^2+10*x+1)/((x-1)^5*(x^2+x+1)) + O(x^100))) \\ Colin Barker, Oct 28 2014
(PARI) {a(n) = my(m = max(n, 2 - n)); polcoeff( x^3 * (1 + x) * (1 + 10*x + x^2) / ((1 - x)^5 * (1 + x + x^2)) + x * O(x^m), m)}; /* Michael Somos, Sep 02 2018 */
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); [0, 0] cat Coefficients(R!(x^3*(x+1)*(x^2+10*x+1)/((1-x)^5*(x^2+x+1)))); // G. C. Greubel, Sep 01 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Definition adapted to offset by Georg Fischer, Jun 18 2021
STATUS
approved