[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A152727
Smallest positive non-divisor of the n-th Fibonacci number (A000045).
2
2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 5, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 5, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 5, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 5, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 7, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 5, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 5, 2, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 5, 2, 2, 3, 2, 2, 3, 2, 2, 3
OFFSET
1,1
COMMENTS
Other values are a(840)=17 and a(12600)=37. Not all terms are prime; for example, the smallest non-divisor of F(2520) is 25.
It appears that the indices k for which a(n) is not prime are divisible by 2520 and that the sequence k/2520 is A047201. - Michel Marcus, Jul 10 2014
LINKS
MAPLE
f:= proc(n) local m, k;
m:= combinat:-fibonacci(n);
for k from 2 do if m mod k <> 0 then return k fi od:
end proc:
map(f, [$1..100]); # Robert Israel, Mar 06 2020
MATHEMATICA
a[n_] := Module[{f = Fibonacci[n], d}, For[d = 2, True, d++, If[!Divisible[f, d], Return[d]]]];
Array[a, 100] (* Jean-François Alcover, Jul 24 2020 *)
PROG
(PARI) a(n) = my(f = fibonacci(n)); my(d = 2); while((f%d) == 0, d++); d; \\ Michel Marcus, Jul 10 2014
(Sage)
def A152727(n) :
d = 2
f = fibonacci(n)
while ((f % d) == 0) :
d = d + 1
return(d)
[A152727(n) for n in (1..105)] # Jani Melik, Jul 10 2014
CROSSREFS
Cf. A000045, A001651 (a(n)=2).
Sequence in context: A003589 A361486 A082204 * A087159 A366922 A218800
KEYWORD
nonn
AUTHOR
John W. Layman, Dec 11 2008
STATUS
approved