[go: up one dir, main page]

login
A152596
a(n) = 7*a(n-1) - 6*a(n-2), n>1; a(0)=1, a(1)=3.
3
1, 3, 15, 87, 519, 3111, 18663, 111975, 671847, 4031079, 24186471, 145118823, 870712935, 5224277607, 31345665639, 188073993831, 1128443962983, 6770663777895, 40623982667367, 243743896004199, 1462463376025191, 8774780256151143, 52648681536906855, 315892089221441127
OFFSET
0,2
FORMULA
G.f.: (1-4*x)/(1 - 7*x + 6*x^2).
a(n) = Sum_{k=0..n} A147703(n,k)*2^(n-k).
a(n) = (1/5)*(3 + 2*6^n), with n>=0. - Paolo P. Lava, Dec 12 2008
E.g.f.: exp(x)*(3 + 2*exp(5*x))/5. - Stefano Spezia, Sep 30 2023
MATHEMATICA
Table[MatrixPower[{{3, 2}, {3, 4}}, n][[1]][[1]], {n, 0, 44}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
LinearRecurrence[{7, -6}, {1, 3}, 30] (* Harvey P. Dale, Jul 27 2021 *)
CROSSREFS
Cf. A147703.
Sequence in context: A180677 A220875 A075841 * A278392 A370287 A168503
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Dec 09 2008
EXTENSIONS
a(21)-a(23) from Stefano Spezia, Sep 30 2023
STATUS
approved