[go: up one dir, main page]

login
A151816
a(n) = (2*n)! - ((2*n-1)!!)^2.
1
0, 1, 15, 495, 29295, 2735775, 370945575, 68916822975, 16813959537375, 5214921734397375, 2004231846526284375, 934957186489800849375, 520444368391989625959375, 340788940288324502208609375, 259324006920606914270844234375, 226933251813970116856323617109375, 226305693647403205116652558922109375
OFFSET
0,3
COMMENTS
This was (incorrectly) proposed as a formula for A001818(2n).
LINKS
Tewodros Amdeberhan, Adriana Duncan, Victor H. Moll, and Vaishavi Sharma, Filter integrals for orthogonal polynomials, arXiv:2012.05040 [math.CA], 2020.
FORMULA
a(n) = A000142(2*n) - A001147(n)^2.
a(n) = A010050(n) - A001818(n).
MAPLE
seq((2*n)! - doublefactorial(2*n-1)^2, n=0..16); # Georg Fischer, Apr 19 2024
CROSSREFS
Bisection of A088979.
Sequence in context: A208624 A013433 A013435 * A013431 A013432 A285765
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 03 2009
EXTENSIONS
Definition corrected by Georg Fischer, Apr 18 2024
STATUS
approved