Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Sep 22 2022 13:39:30
%S 1,1,1,2,2,3,4,2,3,4,8,5,6,2,3,4,4,7,20,14,3,2,4,13,4,10,11,16,14,23,
%T 4,4,25,10,14,35,6,24,3,2,6,7,12,20,9,48,10,5,28,18,23,14,14,11,16,10,
%U 21,4,62,13,38,12,7,16,12,19,36,28,143,32,58,29,96,100,33,2,30,27,12,62,25
%N a(n) = (smallest prime > Fibonacci(n)) - Fibonacci(n).
%H T. D. Noe, <a href="/A159978/b159978.txt">Table of n, a(n) for n=1..1000</a>
%F a(n) = A013632(A000045(n)). - _R. J. Mathar_, Apr 29 2009
%e a(6)=3 because the 6th Fibonacci term is 8 and the distance to nextprime(6) is 3 (11-8=3).
%p A159978 := proc(n) local f; f := combinat[fibonacci](n) ; nextprime(f)-f ; end: seq(A159978(n),n=1..100) ; # _R. J. Mathar_, Apr 29 2009
%t Table[f = Fibonacci[n]; NextPrime[f] - f, {n, 200}] (* _Vladimir Joseph Stephan Orlovsky_, Jul 08 2011 *)
%o (UBASIC) 10 'FiboB 20 A=1:print A; 30 B=1:print B; 40 C=A+B:print C;:T=T+1:print "<";nxtprm(C)-C;">"; 50 D=B+C:print D;:print "<";nxtprm(D)-D;">"; 60 A=C:B=D:if T>22 then stop:else 40
%o (PARI) a(n) = my(f=fibonacci(n)); nextprime(f+1) - f; \\ _Michel Marcus_, Sep 22 2022
%Y Cf. A000045, A013632, A159977.
%K easy,nonn
%O 1,4
%A _Enoch Haga_, Apr 28 2009
%E Extended by _R. J. Mathar_, Apr 29 2009