[go: up one dir, main page]

login
A159780
Inner product of the binary representation of n and its reverse.
4
0, 1, 0, 2, 0, 2, 1, 3, 0, 2, 0, 2, 0, 2, 2, 4, 0, 2, 0, 2, 1, 3, 1, 3, 0, 2, 2, 4, 1, 3, 3, 5, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 2, 4, 2, 4, 0, 2, 2, 4, 0, 2, 2, 4, 0, 2, 2, 4, 2, 4, 4, 6, 0, 2, 0, 2, 0, 2, 0, 2, 1, 3, 1, 3, 1, 3, 1, 3, 0, 2, 0, 2, 2, 4, 2, 4, 1, 3, 1, 3, 3, 5, 3, 5, 0, 2, 2, 4, 0, 2, 2, 4, 1
OFFSET
0,4
COMMENTS
a(n) gives the number of 1's that coincide in the binary representation of n and its reverse. For the n in A140900, we have a(n)=0. The number k first appears at n=2^k-1.
Also central terms and right edge of the triangle in A173920: a(n)=A173920(2*n,n)=A173920(n,n). [From Reinhard Zumkeller, Mar 04 2010]
a(A000225(n)) = n and a(m) < n for m < A000225(n). [Reinhard Zumkeller, Oct 21 2011]
a(n) = sum(A030308(n,k)*A030308(n,A070939(n)-1-k): k = 0..A070939(n)-1). - Reinhard Zumkeller, Mar 10 2013
LINKS
EXAMPLE
14 is represented by the binary vector (1,1,1,0). The reverse is (0,1,1,1). The inner product is 1*0+1*1+1*1+0*1 = 2. Hence a(14) = 2.
MATHEMATICA
Table[d=IntegerDigits[n, 2]; d.Reverse[d], {n, 0, 1023}]
PROG
(Haskell)
a159780 n = sum $ zipWith (*) bs $ reverse bs
where bs = a030308_row n
-- Reinhard Zumkeller, Mar 10 2013, Oct 21 2011
CROSSREFS
Cf. A216176.
Sequence in context: A291440 A061986 A127185 * A355739 A324285 A138036
KEYWORD
nonn,base
AUTHOR
T. D. Noe, Apr 22 2009
STATUS
approved