[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159606
G.f. satisfies: A(x) = 1 + x*d/dx log(1 + x/A(x)).
4
1, 1, -3, 16, -115, 996, -9870, 108816, -1312227, 17116900, -239641798, 3580451040, -56837970358, 955277226736, -16948413979080, 316615678469856, -6213840704926947, 127857371413743540, -2753054722318717950
OFFSET
0,3
LINKS
FORMULA
G.f. satisfies: x^2*A'(x) = 2*x*A(x) + (1-x)*A(x)^2 - A(x)^3.
a(n) ~ -(-1)^n * c * n! * n^3, where c = A238223 / exp(1) = 0.080179614624692622... - Vaclav Kotesovec, Nov 17 2017
EXAMPLE
G.f.: A(x) = 1 + x - 3*x^2 + 16*x^3 - 115*x^4 + 996*x^5 -+...
1/A(x) = 1 - x + 4*x^2 - 23*x^3 + 166*x^4 - 1410*x^5 + 13602*x^6 -+...
log(1+x/A(x)) = x - 3*x^2/2 + 16*x^3/3 - 115*x^4/4 + 996*x^5/5 -+...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*deriv(log(1+x*Ser(A)^-1)+x*O(x^n))); polcoeff(A, n)}
CROSSREFS
Cf. variants: A159607, A159608.
Cf. A238223.
Sequence in context: A042437 A324514 A334786 * A211210 A177402 A036244
KEYWORD
sign
AUTHOR
Paul D. Hanna, May 16 2009
STATUS
approved