[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159484
Upper bound arising in Hadwiger's conjecture.
1
0, 0, 110, 1054, 7097, 41201, 220171, 1115862, 5451131, 25919515, 120721773, 553162595, 2501388936, 11188504443, 49589159037, 218081007181, 952654230982, 4137309942806, 17876235129762, 76889316253171, 329384246847644, 1405944884946771, 5981601330173431
OFFSET
0,3
REFERENCES
Brass, Peter; Moser, William; Pach, Janos (2005), "3.3 Levi-Hadwiger Covering Problem and Illumination", Research Problems in Discrete Geometry, Springer-Verlag, pp. 136-142 .
LINKS
Hugo Hadwiger, Über eine Klassifikation der Streckenkomplexe, Vierteljschr. Naturforsch. ges. Zürich 88: 133-143 (1943).
A. V. Kostochka, Lower bound of the Hadwiger number of graphs by their average degree, Combinatorica 4 (4) (1984), 307-316.
FORMULA
a(n) = floor((4^n)*(5*n*log(n))).
EXAMPLE
a(1) = (4^1) * (5 * 1 * log(1)) = 0.
a(2) = floor ((4^2) * (5 * 2 * log(2))) = floor(110.903549) = 110.
a(3) = floor(1054.6678) = 1054.
MATHEMATICA
Table[If[n==0, 0, Floor[(4^n)*(5*n*Log[n])]], {n, 0, 30}] (* G. C. Greubel, Jun 12 2018 *)
PROG
(PARI) for(n=0, 30, print1(if(n==0, 0, floor((4^n)*(5*n*log(n)))) , ", ")) \\ G. C. Greubel, Jun 12 2018
(Magma) [0] cat [ Floor((4^n)*(5*n*Log(n))) : n in [1..30]]; // G. C. Greubel, Jun 12 2018
CROSSREFS
Sequence in context: A234760 A234753 A205610 * A283219 A283137 A213087
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Apr 14 2009
EXTENSIONS
a(7)-a(22) from Nathaniel Johnston, Apr 26 2011
STATUS
approved