[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159472
Numerator of Hermite(n, 1/12).
1
1, 1, -71, -215, 15121, 77041, -5366519, -38648231, 2666077345, 24927458401, -1702690661159, -19650460709879, 1328880542928049, 18306878596263505, -1225525309584390359, -19678858934618003399, 1303888475416523584321, 23973933968096463499969
OFFSET
0,3
FORMULA
From G. C. Greubel, Jun 15 2018: (Start)
a(n) = 6^n * Hermite(n,1/12).
E.g.f.: exp(x-36*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(1/6)^(n-2*k)/(k!*(n-2*k)!)). (End)
MATHEMATICA
Numerator[Table[HermiteH[n, 1/12], {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 13 2011 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 1/12)) \\ Charles R Greathouse IV, Jan 29 2016
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(1/6)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jun 15 2018
CROSSREFS
Cf. A159280.
Sequence in context: A166255 A142076 A096698 * A160369 A001126 A140628
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved