[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159478
a(n) = 2^(n^2+n) * C(1/2^n, n).
5
1, 2, -6, 140, -14570, 6283452, -11049839724, 78893138035608, -2282580118745565210, 267227101453296251927660, -126415241162450125116966673796, 241332381844862786094865482962203112, -1857025703922208959523779453799872508349700
OFFSET
0,2
COMMENTS
Sum_{n>=0} C(1/2^n, n) = 1.4306345243611686570661803375590... (A139823).
LINKS
FORMULA
G.f.: Sum_{n>=0} a(n)*x^n/2^(n^2+n) = Sum_{n>=0} log(1 + x/2^n)^n/n!.
a(n) = [x^n] (1 + 2^(n+1)*x)^(1/2^n).
a(n) ~ -(-1)^n * 2^(n^2)/n. - Vaclav Kotesovec, Jun 29 2018
EXAMPLE
G.f.: A(x) = 1 +2*x/2^2 -6*x^2/2^6 +140*x^3/2^12 -14570*x^4/2^20 +...
A(x) = 1 + log(1+x/2) + log(1+x/4)^2/2! + log(1+x/8)^3/3! +...
Illustrate a(n) = [x^n] (1 + 2^(n+1)*x)^(1/2^n):
(1+4*x)^(1/2) = 1 + (2)*x - 2*x^2 + 4*x^3 - 10*x^4 +...
(1+8*x)^(1/4) = 1 + 2*x - (6)*x^2 + 28*x^3 - 154*x^4 +...
(1+16*x)^(1/8) = 1 + 2*x - 14*x^2 + (140)*x^3 - 1610*x^4 +...
(1+32*x)^(1/16) = 1 + 2*x - 30*x^2 + 620*x^3 - (14570)*x^4 +...
(1+64*x)^(1/32) = 1 + 2*x - 62*x^2 + 2604*x^3 - 123690*x^4 + (6283452)*x^5 +...
MATHEMATICA
Table[2^(n^2 + n)*Binomial[1/2^n, n], {n, 0, 25}] (* G. C. Greubel, Jun 12 2018 *)
PROG
(PARI) a(n)=2^(n^2+n)*binomial(1/2^n, n)
(Magma) SetDefaultRealField(RealField(250)); [Round(2^(n + n^2)*Gamma(1 + 1/2^n)/(Gamma(n+1)*Gamma(1 + 1/2^n - n))): n in [0..25]]; // G. C. Greubel, Jun 12 2018
CROSSREFS
Cf. A139823.
Sequence in context: A206849 A368395 A090907 * A047937 A027731 A280821
KEYWORD
sign
AUTHOR
Paul D. Hanna, Apr 19 2009
STATUS
approved