[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159476
Expansion of e.g.f.: A(x) = exp( Sum_{n>=1} (n-1)!*x^n/n ).
2
1, 1, 2, 8, 62, 862, 19492, 656224, 30739676, 1906807004, 151002453464, 14846381034784, 1772922018732328, 252631570039665832, 42329528274029082608, 8237406877267427867648, 1842215469973381977889808, 469160036709398319115207696, 134976328490030629922214893344
OFFSET
0,3
LINKS
FORMULA
a(n) = (n-1)!*Sum_{k=1..n} (k-1)!*a(n-k)/(n-k)! for n > 0 with a(0)=1.
a(n) ~ (n-1)!^2. - Vaclav Kotesovec, Jul 10 2018
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 8*x^3/3! + 62*x^4/4! + 862*x^5/5! + ...
log(A(x)) = x + x^2/2 + 2!*x^3/3 + 3!*x^4/4 + 4!*x^5/5 + 5!*x^6/6 + ...
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(
a(n-i)*binomial(n-1, i-1)*(i-1)!^2, i=1..n))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Aug 13 2019
MATHEMATICA
a:= CoefficientList[Series[Exp[Sum[(n - 1)!*x^n/n, {n, 1, 500}]], {x, 0, 35}], x]; Table[a[[n]]*(n - 1)!, {n, 1, 30}] (* G. C. Greubel, Jul 09 2018 *)
PROG
(PARI) {a(n)=n!*polcoeff(exp(sum(k=1, n, (k-1)!*x^k/k)+x*O(x^n)), n)}
(PARI) {a(n)=if(n==0, 1, (n-1)!*sum(k=1, n, (k-1)!*a(n-k)/(n-k)!))}
CROSSREFS
Sequence in context: A086903 A161566 A192516 * A230824 A006245 A202751
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 15 2009
STATUS
approved