[go: up one dir, main page]

login
A159069
a(n) = A159068(n)/n.
5
1, 2, 3, 6, 7, 23, 19, 66, 95, 255, 187, 1059, 631, 3227, 5243, 11426, 7711, 51887, 27595, 184911, 232887, 606627, 364723, 2807935, 2405183, 8671943, 10368079, 36873651, 18512791, 167268639, 69273667, 496472226, 551130063, 1856103039
OFFSET
1,2
LINKS
EXAMPLE
Row 6 of Pascal's triangle is 1,6,15,20,15,6,1. The greatest common divisors of n and each integer from 1 to 6 are gcd(1,6)=1, gcd(2,6)=2, gcd(3,6)=3, gcd(4,6)=2, gcd(5,6)=1, and gcd(6,6)=6. So a(6) = (1/6)*( 6*1 + 15*2 + 20*3 + 15*2 + 6*1 + 1*6) = 138/6 = 23. Note that each term of the sum in parentheses is a multiple of 6, so 138 is a multiple of 6.
MAPLE
A159068 := proc(n) add(binomial(n, k)*gcd(k, n), k=1..n) ; end: A159069 := proc(n) A159068(n)/n ; end: seq(A159069(n), n=1..80) ; # R. J. Mathar, Apr 06 2009
MATHEMATICA
Table[Sum[Binomial[n, k] GCD[k, n], {k, n}]/n, {n, 34}] (* Michael De Vlieger, Aug 29 2017 *)
PROG
(PARI) a(n) = sum(k=1, n, binomial(n, k) * gcd(k, n))/n; \\ Michel Marcus, Aug 30 2017
CROSSREFS
Cf. A159068.
Sequence in context: A073317 A371293 A064731 * A162681 A070301 A329294
KEYWORD
nonn
AUTHOR
Leroy Quet, Apr 04 2009
EXTENSIONS
Extended by R. J. Mathar, Apr 06 2009
STATUS
approved