[go: up one dir, main page]

login
A156713
Positive numbers y such that y^2 is of the form x^2+(x+16807)^2 with integer x.
1
12005, 12467, 12985, 14063, 15025, 16807, 19073, 20923, 24157, 26747, 31213, 40817, 48055, 53753, 63455, 71077, 84035, 99413, 111475, 131957, 148015, 175273, 232897, 275863, 309533, 366667, 411437, 487403, 577405, 647927, 767585, 861343
OFFSET
1,1
COMMENTS
(-7203, a(1)), (-5740, a(2)), (-4704, a(3)), (-3087, a(4)), (-1903, a(5)), and (A118576(n), a(n+5)) are solutions (x, y) to the Diophantine equation x^2+(x+16807)^2 = y^2.
lim_{n -> infinity} a(n)/a(n-11) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2)) / ((9+4*sqrt(2))/7)^2 for n mod 11 = 1.
lim_{n -> infinity} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^5 / (3+2*sqrt(2))^2 for n mod 11 = {0, 2, 4, 6, 7, 9}.
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))^3 / ((9+4*sqrt(2))/7)^7 for n mod 11 = {3, 5, 8, 10}.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).
FORMULA
a(n) = 6*a(n-11)-a(n-22) for n > 22; a(1) = 12005, a(2) = 12467, a(3) = 12985, a(4) = 14063, a(5) = 15025, a(6) = 16807, a(7) = 19073, a(8) = 20923, a(9) = 24157, a(10) = 26747, a(11) = 31213, a(12) = 40817, a(13) = 48055, a(14) = 53753, a(15) = 63455, a(16) = 71077, a(17) = 84035, a(18) = 99413, a(19) = 111475, a(20) = 131957, a(21) = 148015, a(22) = 175273.
G.f.: (1-x)*(12005 +24472*x+37457*x^2+51520*x^3+66545*x^4+83352*x^5+102425*x^6+123348*x^7+147505*x^8+174252*x^9+205465*x^10+174252*x^11+147505*x^12+123348*x^13+102425*x^14+83352*x^15+66545*x^16+51520*x^17 +37457*x^18+24472*x^19+12005*x^20)/(1-6*x^11+x^22).
EXAMPLE
(-7203, a(1)) = (-7203, 12005) is a solution: (-7203)^2+(-7203+16807)^2 = 51883209+92236816 = 144120025 = 12005^2.
(A118576(1), a(6)) = (0, 16807) is a solution: 0^2+(0+16807)^2 = 258791569 = 16807^2.
(A118576(3), a(8)) = (3773, 20923) is a solution: 3773^2+(3773+16807)^2 = 14235529+423536400 = 437771929 = 20923^2.
MATHEMATICA
CoefficientList[Series[(1-x)(12005+24472x+37457x^2+51520x^3+66545x^4+83352x^5+ 102425x^6+123348x^7+147505x^8+ 174252x^9+205465x^10+ 174252x^11+ 147505x^12+ 123348x^13+ 102425x^14+83352x^15+66545x^16+51520x^17+ 37457x^18+ 24472x^19+ 12005x^20)/(1-6x^11+x^22), {x, 0, 40}], x] (* or *) LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1}, {12005, 12467, 12985, 14063, 15025, 16807, 19073, 20923, 24157, 26747, 31213, 40817, 48055, 53753, 63455, 71077, 84035, 99413, 111475, 131957, 148015, 175273}, 40] (* Harvey P. Dale, Oct 02 2021 *)
PROG
(PARI) {forstep(n=-7220, 700000, [1, 3], if(issquare(2*n^2+33614*n+282475249, &k), print1(k, ", ")))}
CROSSREFS
Cf. A118576, A156035 (decimal expansion of 3+2*sqrt(2)), A156649 (decimal expansion of (9+4*sqrt(2))/7).
Sequence in context: A235074 A251163 A236607 * A183059 A287046 A235308
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, Feb 17 2009
STATUS
approved