[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156700
Number of partitions of the set of odd numbers {1, 3, 5, ..., 4*n-1} into two subsets with equal sum.
9
0, 1, 1, 4, 10, 34, 103, 346, 1153, 3965, 13746, 48396, 171835, 615966, 2223755, 8082457, 29543309, 108545916, 400623807, 1484716135, 5522723344, 20612084010, 77164686511, 289688970195, 1090342139349, 4113620233260, 15553877949800, 58930127470164
OFFSET
1,4
COMMENTS
Also the number of 2 X 2n reduced magic rectangles with values 1..4n. In a magic rectangle all column sums are equal and also all row sums are equal. Reduced means up to row and column permutations. - Andrew Howroyd, Nov 22 2018
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..1000 (terms 1..400 from Alois P. Heinz)
FORMULA
a(n) ~ sqrt(3) * 2^(2*n-3) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 18 2017
a(n) = [x^0](Product_{k=1..2*n} x^-(2*k-1) + x^(2*k-1))/2. - Andrew Howroyd, Nov 22 2018
EXAMPLE
For n=2: {1,7}U{3,5}. For n=3: {1,3,5,9}U{7,11}. For n=4: {1,3,13,15}U{5,7,9,11}, {1,5,11,15}U{3,7,9,13}, {1,7,9,15}U{3,5,11,13}, {3,5,9,15}U{1,7,11,13}.
From Andrew Howroyd, Nov 22 2018: (Start)
For n=3: The unique 2 X 6 reduced magic rectangle is:
1 3 7 8 9 11
12 10 6 5 4 2
(End)
MAPLE
b:= proc() option remember; local i, j, t; `if`(args[1]=0, `if`(nargs=2, 1, b(args[t] $t=2..nargs)), add(`if`(args[j] -args[nargs] <0, 0, b(sort([seq(args[i] -`if`(i=j, args[nargs], 0), i=1..nargs-1)])[], args[nargs]-2)), j=1..nargs-1)) end: a:= n-> b((2*n^2)$2, 4*n-1)/2: seq(a(n), n=1..40); # Alois P. Heinz, Sep 06 2009
MATHEMATICA
Table[SeriesCoefficient[Product[(x^(2*k - 1) + 1/x^(2*k - 1)), {k, 1, 2*n}]/2, {x, 0, 0}], {n, 1, 30}] (* G. C. Greubel, Nov 22 2018 *)
PROG
(PARI) a(n)=polcoef(prod(k=1, 2*n, x^-(2*k-1) + x^(2*k-1)), 0)/2; \\ Andrew Howroyd, Nov 22 2018
CROSSREFS
Cf. A290889.
Sequence in context: A005630 A100507 A223006 * A274479 A231524 A182645
KEYWORD
nonn
AUTHOR
Wim Couwenberg (wim.couwenberg(AT)gmail.com), Feb 13 2009
EXTENSIONS
Extended beyond a(18) by Alois P. Heinz, Sep 06 2009
STATUS
approved