Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Mar 01 2021 02:01:44
%S 1,1,1,1,-2,1,1,16,16,1,1,-224,1792,-224,1,1,4480,501760,501760,4480,
%T 1,1,-116480,260915200,-3652812800,260915200,-116480,1,1,3727360,
%U 217081446400,60782804992000,60782804992000,217081446400,3727360,1
%N Triangle T(n, k, m) = t(n,m)/( t(k,m) * t(n-k,m) ) with T(n, 0, m) = T(n, n, m) = 1, where t(n, m) = Product_{j=1..n} Product_{i=1..j-1} ( 1 - (m+1)*(2*i-1) ) and m = 2, read by rows.
%C Row sums are: {1, 2, 0, 34, 1346, 1012482, -3131215358, 121999780331522,
%C 34591292869081661442, 107137531255480378706493442, ...}.
%H G. C. Greubel, <a href="/A156697/b156697.txt">Rows n = 0..30 of the triangle, flattened</a>
%F T(n, k, m) = t(n,m)/( t(k,m) * t(n-k,m) ) with T(n, 0, m) = T(n, n, m) = 1, where t(n, m) = Product_{j=1..n} Product_{i=1..j-1} ( 1 - (m+1)*(2*i-1) ) and m = 2.
%F T(n, k, m, p, q) = (-p*(m+1))^(k*(n-k)) * (f(n,m,p,q)/(f(k,m,p,q)*f(n-k,m,p,q))) where Product_{j=1..n} Pochhammer( (q*(m+1) -1)/(p*(m+1)), j) for (m, p, q) = (2, 2, -1). - _G. C. Greubel_, Feb 25 2021
%e Triangle begins as:
%e 1;
%e 1, 1;
%e 1, -2, 1;
%e 1, 16, 16, 1;
%e 1, -224, 1792, -224, 1;
%e 1, 4480, 501760, 501760, 4480, 1;
%e 1, -116480, 260915200, -3652812800, 260915200, -116480, 1;
%t (* First program *)
%t t[n_, k_]:= If[k==0, n!, Product[1 -(2*i-1)*(k+1), {j,n}, {i,0,j-1}] ];
%t T[n_, k_, m_]:= If[n==0, 1, t[n, m]/(t[k, m]*t[n-k, m])];
%t Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Feb 25 2021 *)
%t (* Second program *)
%t f[n_, m_, p_, q_]:= Product[Pochhammer[(q*(m+1) -1)/(p*(m+1)), j], {j,n}];
%t T[n_, k_, m_, p_, q_]:= (-p*(m+1))^(k*(n-k))*(f[n,m,p,q]/(f[k,m,p,q]*f[n-k,m,p,q]));
%t Table[T[n,k,2,2,-1], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Feb 25 2021 *)
%o (Sage)
%o @CachedFunction
%o def f(n, m, p, q): return product( rising_factorial( (q*(m+1)-1)/(p*(m+1)), j) for j in (1..n))
%o def T(n, k, m, p, q): return (-p*(m+1))^(k*(n-k))*(f(n,m,p,q)/(f(k,m,p,q)*f(n-k,m,p,q)))
%o flatten([[T(n,k,2,2,-1) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Feb 25 2021
%o (Magma)
%o f:= func< n,m,p,q | n eq 0 select 1 else m eq 0 select Factorial(n) else (&*[ 1 -(p*i+q)*(m+1): i in [0..j], j in [0..n-1]]) >;
%o T:= func< n,k,m,p,q | f(n,m,p,q)/(f(k,m,p,q)*f(n-k,m,p,q)) >;
%o [T(n,k,2,2,-1): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Feb 25 2021
%Y Cf. A007318 (m=0), A156696 (m=1), this sequence (m=2), A156698 (m=3).
%Y Cf. A156690, A156691, A156692, A156693.
%Y Cf. A156691, A156699, A156725.
%K sign,tabl
%O 0,5
%A _Roger L. Bagula_, Feb 13 2009
%E Edited by _G. C. Greubel_, Feb 25 2021