%I #20 Jul 07 2021 15:46:00
%S 1,-1,-2,13,22,-121,-602,18581,30742,-305071,-2523002,61203943,
%T 303692662,-4353296221,-50402079002,6669149100757,11030684333782,
%U -206772189255571,-3077986048956602,128970681211645873,1066578948824962102,-24697503335329725121,-449342758735568563802
%N Numerator of Euler(n,1/3).
%H Vincenzo Librandi, <a href="/A156179/b156179.txt">Table of n, a(n) for n = 0..200</a>
%H Michael E. Hoffman, <a href="https://doi.org/10.37236/1453">Derivative Polynomials, Euler Polynomials, and Associated Integer Sequences</a>, The Electronic Journal of Combinatorics, Volume 6.1 (1999): Research paper R21, 13 p. See Eq. (14).
%e 1, -1/6, -2/9, 13/108, 22/81, -121/486, -602/729, 18581/17496, ...
%p [seq(euler(n,1/3),n=0..50)];
%t Numerator[EulerE[Range[0,30],1/3]] (* _Harvey P. Dale_, Apr 29 2012 *)
%Y Cf. A156180 and A079144.
%Y Terms of even indices give A210657.
%K sign,frac
%O 0,3
%A _N. J. A. Sloane_, Nov 07 2009