[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155049
Expansion of (1+5*x)/(1-13*x+10*x^2).
1
1, 18, 224, 2732, 33276, 405268, 4935724, 60111732, 732095276, 8916121268, 108588623724, 1322490895732, 16106495407276, 196159531337268, 2389008953311724, 29095521079679732, 354351684502719276, 4315616687738553268, 52559500095573999724, 640117334365076463732
OFFSET
0,2
LINKS
Tomislav Došlić and Frode Måløy, Chain hexagonal cacti: Matchings and independent sets, Discr. Math., 310 (2010), 1676-1690.
FORMULA
From Colin Barker, Jan 13 2020: (Start)
a(n) = 13*a(n-1) - 10*a(n-2) for n>1.
a(n) = 2^(-1-n)*((13-sqrt(129))^n*(-23+sqrt(129)) + (13+sqrt(129))^n*(23+sqrt(129))) / sqrt(129).
(End)
MATHEMATICA
CoefficientList[Series[(1+5x)/(1-13x+10x^2), {x, 0, 20}], x] (* or *) LinearRecurrence[{13, -10}, {1, 18}, 20] (* Harvey P. Dale, Mar 23 2022 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 25); Coefficients(R!( (1+5*x)/(1-13*x+10*x^2) )); // Marius A. Burtea, Jan 13 2020
(Magma) a:=[1, 18]; [n le 2 select a[n] else 13*Self(n-1)-10*Self(n-2):n in [1..25]]; // Marius A. Burtea, Jan 13 2020
(PARI) Vec((1 + 5*x) / (1 - 13*x + 10*x^2) + O(x^20)) \\ Colin Barker, Jan 13 2020
CROSSREFS
Sequence in context: A017997 A018911 A021194 * A155073 A153709 A017933
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 22 2010
STATUS
approved