[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154630
A triangular sequence of polynomial coefficients: {a,b,c,d}={4, 5, 5, 0}; p(x,n)=(-1)^(n)*(1 - d - c x)^(n + 1)*Sum[(a*k + b)^n*(c*x + d)^k, {k, 0, Infinity}].
0
1, -5, 5, 25, 30, 25, -125, -1145, -775, 125, 625, 17180, 50150, 9500, 625, -3125, -201495, -1596850, -1916750, -155625, 3125, 15625, 2110330, 35871175, 120411500, 70354375, 2256250, 15625, -78125, -20789845, -666806625
OFFSET
0,2
COMMENTS
Row sums are:
{1, 0, 80, -1920, 78080, -3870720, 231034880, -16078110720, 1278679777280,
-114405691883520, 11373487802286080}
FORMULA
{a,b,c,d}={4, 5, 5, 0};
p(x,n)=(-1)^(n)*(1 - d - c x)^(n + 1)*Sum[(a*k + b)^n*(c*x + d)^k, {k, 0, Infinity}];
t(n,m)=Coefficients(p(x,n));
p(x,n)=(-4)^n*(1-5*n)^(n+1)*LerchPhi[5*x,-n,5/4]
EXAMPLE
{1},
{-5, 5},
{25, 30, 25},
{-125, -1145, -775, 125},
{625, 17180, 50150, 9500, 625},
{-3125, -201495, -1596850, -1916750, -155625, 3125},
{15625, 2110330, 35871175, 120411500, 70354375,2256250, 15625},
{-78125, -20789845, -666806625, -4737333625, -8100074375, -2518809375, -34296875, 78125},
{390625, 197655480, 11059318300, 143881301000, 525401583750, 508474325000, 89152937500, 511875000, 390625},
{-1953125, -1839446195, -170454627700, -3717803721500, -24702156853750, -52116976906250, -30551523062500, -3137244687500, -7692578125, 1953125},
{9765625, 16896812630, 2501024320325, 86214038005000, 946292721901250, 3649629323762500, 4794767436781250, 1783862843125000, 110088189453125, 115308593750, 9765625}
MATHEMATICA
Clear[p, a, b, c, d, n];
{a, b, c, d} = {4, 5, 5, 0} p[x_, n_] = (-1)^(n)*(1 - d - c x)^(n + 1)*Sum[(a*k + b)^n*(c*x + d)^k, {k, 0, Infinity}];
Table[FullSimplify[ExpandAll[p[x, n]]], {n, 0, 10}];
Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A074872 A056451 A170834 * A245520 A245130 A263872
KEYWORD
sign
AUTHOR
Roger L. Bagula, Jan 13 2009
STATUS
approved