[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A154575
a(n) = 2*n^2 + 12*n + 4.
1
18, 36, 58, 84, 114, 148, 186, 228, 274, 324, 378, 436, 498, 564, 634, 708, 786, 868, 954, 1044, 1138, 1236, 1338, 1444, 1554, 1668, 1786, 1908, 2034, 2164, 2298, 2436, 2578, 2724, 2874, 3028, 3186, 3348, 3514, 3684, 3858, 4036, 4218, 4404, 4594, 4788, 4986, 5188
OFFSET
1,1
COMMENTS
Sixth diagonal of A144562.
2*a(n) + 28 is a square.
FORMULA
From R. J. Mathar, Jan 05 2011: (Start)
a(n) = 2*A028881(n+3).
G.f.: -2*x*(2*x-3)*(x-3)/(x-1)^3. (End)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 26 2012
From Amiram Eldar, Feb 25 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/28 - cot(sqrt(7)*Pi)*Pi/(4*sqrt(7)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 31/84 - cosec(sqrt(7)*Pi)*Pi/(4*sqrt(7)). (End)
E.g.f.: 2*exp(x)*(x^2 + 7*x + 2). - Elmo R. Oliveira, Nov 02 2024
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {18, 36, 58}, 50] (* Vincenzo Librandi, Feb 26 2012 *)
Table[2n^2+12n+4, {n, 50}] (* Harvey P. Dale, Sep 18 2019 *)
PROG
(Magma) I:=[18, 36, 58]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 26 2012
(PARI) for(n=1, 50, print1(2*n^2+12*n+4", ")); \\ Vincenzo Librandi, Feb 26 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 12 2009
STATUS
approved