[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143521
Expansion of g.f. Sum_{k>0} k * x^k / (1 + (-x)^k)^2.
0
1, 4, 6, 4, 10, 24, 14, 0, 27, 40, 22, 24, 26, 56, 60, -16, 34, 108, 38, 40, 84, 88, 46, 0, 75, 104, 108, 56, 58, 240, 62, -64, 132, 136, 140, 108, 74, 152, 156, 0, 82, 336, 86, 88, 270, 184, 94, -96, 147, 300, 204, 104, 106, 432, 220, 0, 228, 232, 118, 240, 122, 248, 378, -192
OFFSET
1,2
FORMULA
a(n) is multiplicative with a(2^e) = (3-e) * 2^e if e>0, a(p^e) = (e+1) * p^e if p>2.
a(16*n + 8) = 0.
EXAMPLE
x + 4*x^2 + 6*x^3 + 4*x^4 + 10*x^5 + 24*x^6 + 14*x^7 + 27*x^9 + 40*x^10 + ...
MATHEMATICA
f[p_, e_] := (e+1) * p^e; f[2, e_] := (3-e) * 2^e; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Sep 05 2023 *)
PROG
(PARI) {a(n) = local(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], if(p = A[k, 1], e = A[k, 2]; if( p==2, (3-e), e+1) * p^e)))}
(PARI) {a(n) = if( n<1, 0, polcoeff( sum(k=1, n, k * x^k / (1 + (-x)^k)^2, x*O(x^n)), n))}
CROSSREFS
A038040(2*n + 1) = a(2*n + 1). -16 * A038040(n) = a(16*n).
Sequence in context: A328045 A277278 A328722 * A278363 A123969 A255679
KEYWORD
sign,easy,mult
AUTHOR
Michael Somos, Aug 22 2008
STATUS
approved