Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Oct 04 2018 20:23:30
%S 1,1,3,1,3,9,1,3,5,27,1,3,5,11,81,1,3,5,7,21,243,1,3,5,7,13,43,729,1,
%T 3,5,7,9,23,85,2187,1,3,5,7,9,15,37,171,6561,1,3,5,7,9,11,25,63,341,
%U 19683,1,3,5,7,9,11,17,39,109,683,59049,1,3,5,7,9,11,13,27,57,183,1365,177147
%N Square array A(n,k) of numbers of length n ternary words with at least k 0-digits between any other digits (n,k >= 0), read by antidiagonals.
%H Alois P. Heinz, <a href="/A143453/b143453.txt">Rows n = 0..140, flattened</a>
%F G.f. of column k: 1/(x^k*(1-x-2*x^(k+1))).
%F A(n,k) = 3^n if k=0, else A(n,k) = 2*n+1 if n<=k+1, else A(n,k) = A(n-1,k) + 2*A(n-k-1,k).
%e A(3,1) = 11, because 11 ternary words of length 3 have at least 1 0-digit between any other digits: 000, 001, 002, 010, 020, 100, 101, 102, 200, 201, 202.
%e Square array A(n,k) begins:
%e 1, 1, 1, 1, 1, 1, 1, 1, ...
%e 3, 3, 3, 3, 3, 3, 3, 3, ...
%e 9, 5, 5, 5, 5, 5, 5, 5, ...
%e 27, 11, 7, 7, 7, 7, 7, 7, ...
%e 81, 21, 13, 9, 9, 9, 9, 9, ...
%e 243, 43, 23, 15, 11, 11, 11, 11, ...
%e 729, 85, 37, 25, 17, 13, 13, 13, ...
%e 2187, 171, 63, 39, 27, 19, 15, 15, ...
%p A := proc (n::nonnegint, k::nonnegint) option remember; if k=0 then 3^n elif n<=k+1 then 2*n+1 else A(n-1, k) +2*A(n-k-1, k) fi end: seq(seq(A(n,d-n), n=0..d), d=0..14);
%t a[n_, 0] := 3^n; a[n_, k_] /; n <= k+1 := 2*n+1; a[n_, k_] := a[n, k] = a[n-1, k] + 2*a[n-k-1, k]; Table[a[n-k, k], {n, 0, 14}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, Dec 11 2013 *)
%Y Column k=0: A000244, k=1: A001045(n+2), k=2: A003229(n+1) and A077949(n+2), k=3: A052942(n+3), k=4: A143447, k=5: A143448, k=6: A143449, k=7: A143450, k=8: A143451, k=9: A143452.
%Y Diagonal: A005408.
%K nonn,tabl
%O 0,3
%A _Alois P. Heinz_, Aug 16 2008