[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143361
Triangle read by rows: T(n,k) is the number of 010-avoiding binary words of length n containing k 00 subwords (0<=k<=n-1).
1
2, 3, 1, 4, 2, 1, 6, 3, 2, 1, 9, 6, 3, 2, 1, 13, 11, 7, 3, 2, 1, 19, 18, 14, 8, 3, 2, 1, 28, 30, 24, 17, 9, 3, 2, 1, 41, 50, 43, 30, 20, 10, 3, 2, 1, 60, 81, 77, 57, 36, 23, 11, 3, 2, 1, 88, 130, 132, 108, 72, 42, 26, 12, 3, 2, 1, 129, 208, 224, 193, 143, 88, 48, 29, 13, 3, 2, 1
OFFSET
1,1
COMMENTS
Sum of entries in row n = A005251(n+3).
T(n,0) = A000930(n+2).
Sum(k*T(n,k), k=0..n-1) = A118430(n+1).
LINKS
FORMULA
G.f.: G(t,z) = (1+z-tz+z^2)/(1-z-tz+tz^2-z^3)-1.
EXAMPLE
T(5,2)=3 because we have 00011, 10001 and 11000.
Triangle starts:
2;
3, 1;
4, 2, 1;
6, 3, 2, 1;
9, 6, 3, 2, 1;
13, 11, 7, 3, 2, 1;
MAPLE
G:=(1+z-t*z+z^2)/(1-z-t*z+t*z^2-z^3)-1: Gser:=simplify(series(G, z=0, 14)): for n to 12 do P[n]:=sort(coeff(Gser, z, n)) end do: for n to 12 do seq(coeff(P[n], t, j), j=0..n-1) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<3,
expand(b(n-1, i+1) +b(n-1, i)*`if`(i=2, x, 1)), b(n-1, 1)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 1)):
seq(T(n), n=0..15); # Alois P. Heinz, Dec 18 2013
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<3, Expand[b[n-1, i+1] + b[n-1, i]*If[i == 2, x, 1]], b[n-1, 1]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 1]]; Table[T[n], {n, 1, 15}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Aug 15 2008
STATUS
approved