[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A142586
Binomial transform of A014217.
2
1, 2, 5, 14, 39, 107, 290, 779, 2079, 5522, 14615, 38579, 101634, 267347, 702455, 1844114, 4838079, 12686507, 33254210, 87141659, 228301839, 598026002, 1566300455, 4101923939, 10741568514, 28126975907, 73647747815, 192833044754, 504884940879, 1321888886747
OFFSET
0,2
COMMENTS
The second term in the k-th iterated differences is 2, 3, 6, 10, 17, 28, 46, ... = A001610(k+1).
FORMULA
From R. J. Mathar, Sep 22 2008: (Start)
G.f.: (1 - 3*x + 2*x^2 + x^3)/((1-3*x+x^2)*(1-2*x)).
a(n) = A005248(n) - 2^(n-1), n>0. (End)
a(n) = 5*a(n-1) - 7*a(n-2) + 2*a(n-3); a(0)=1, a(1)=2, a(2)=5, a(3)=14. - Harvey P. Dale, Aug 08 2011
a(n) = (-2^(-1+n) + ((3-sqrt(5))/2)^n + ((3+sqrt(5))/2)^n) for n > 0. - Colin Barker, Jun 05 2017
MAPLE
1, seq(combinat[fibonacci](2*n+1) +combinat[fibonacci](2*n-1) -2^(n-1), n = 1..30); # G. C. Greubel, Apr 13 2021
MATHEMATICA
CoefficientList[Series[(1-3x+2x^2+x^3)/((1-3x+x^2)(1-2x)), {x, 0, 30}], x] (* or *) Join[{1}, LinearRecurrence[{5, -7, 2}, {2, 5, 14}, 30]] (* Harvey P. Dale, Aug 08 2011 *)
PROG
(PARI) Vec((1-3*x+2*x^2+x^3)/((1-3*x+x^2)*(1-2*x)) + O(x^30)) \\ Colin Barker, Jun 05 2017
(Magma) [1] cat [Lucas(2*n) - 2^(n-1): n in [1..30]]; // G. C. Greubel, Apr 13 2021
(Sage) [1]+[lucas_number2(2*n, 1, -1) -2^(n-1) for n in (1..30)] # G. C. Greubel, Apr 13 2021
CROSSREFS
Sequence in context: A331573 A141752 A291729 * A202207 A132834 A000641
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Sep 21 2008
EXTENSIONS
Edited and extended by R. J. Mathar, Sep 22 2008
STATUS
approved