[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A142245
Expansion of 2*x*(6 + 5*x) / ((1 - x)*(1 - x - x^2)).
1
0, 12, 34, 68, 124, 214, 360, 596, 978, 1596, 2596, 4214, 6832, 11068, 17922, 29012, 46956, 75990, 122968, 198980, 321970, 520972, 842964, 1363958, 2206944, 3570924, 5777890, 9348836, 15126748, 24475606, 39602376, 64078004, 103680402, 167758428, 271438852, 439197302
OFFSET
0,2
COMMENTS
The generic a(n) = 2*a(n-1)-a(n-3) for this family of recurrences (see the link to the OEIS index) leads directly to a common symmetry of the form a(n+1)-2a(n) = 12, 10, 0, -12, -34, -68, -124,... = 12, 10, -a(n).
FORMULA
G.f.: 2*x*(6 + 5*x) / ((1 - x)*(1 - x - x^2)).
a(n) = 10*A094707(2*n) + A094707(2*n+1).
a(n) = 2*A022095(n+3) - 22. - R. J. Mathar, Jul 07 2011
a(n) = 23*F(n)+11*L(n)-22 = 23*A000045(n)+11*A000032(n)-22, where F(n) and L(n) are the n-th Fibonacci and Lucas numbers, respectively. - Todd Silvestri, Dec 16 2014
a(n) = (1/5)*(-110 + (55-23*sqrt(5))*((1-sqrt(5))/2)^n + ((1+sqrt(5))/2)^n*(55+23*sqrt(5))). - Colin Barker, Nov 13 2017
MATHEMATICA
a[n_Integer/; n>=0]:=23 Fibonacci[n]+11 LucasL[n]-22 (* Todd Silvestri, Dec 16 2014 *)
LinearRecurrence[{2, 0, -1}, {0, 12, 34}, 40] (* Harvey P. Dale, May 12 2015 *)
PROG
(PARI) concat(0, Vec(2*x*(6 + 5*x) / ((1 - x)*(1 - x - x^2)) + O(x^50))) \\ Colin Barker, Nov 13 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Sep 18 2008
STATUS
approved