OFFSET
1,5
COMMENTS
Triangle read by rows, antidiagonals of an array composed of generalized Thue-Morse sequences [defined in A010060, comment of Zizka]. For each row of the array, n>0; n-th term of m-th row (m>0) = sum of digits of n in base (m+1), mod (m+1).
Every row of the array starting from the n-th one as well as every row of the triangle starting from the (2*n-1)-th one begins from (1,2,3,...,n).
Row sums = A141804: (1, 2, 3, 5, 8, 7, 15, 15, 18, 22,...).
LINKS
Ivan Neretin, Table of n, a(n) for n = 1..8001
EXAMPLE
First few rows of the array are:
1, 1, 0, 1, 0, 0, 1, 1,...
1, 2, 1, 2, 0, 2, 0, 1,...
1, 2, 3, 1, 2, 3, 0, 2,...
1, 2, 3, 4, 1, 2, 3, 4,...
1, 2, 3, 4, 5, 1, 2, 3,...
1, 2, 3, 4, 5, 6, 1, 2,...
...
Triangle = antidiagonals of the array:
1;
1, 1;
1, 2, 0;
1, 2, 1, 1;
1, 2, 3, 2, 0;
1, 2, 3, 1, 0, 0;
1, 2, 3, 4, 2, 2, 1;
1, 2, 3, 4, 1, 3, 0, 1;
1, 2, 3, 4, 5, 2, 0, 1, 0;
1, 2, 3, 4, 5, 1, 3, 2, 1, 0;
1, 2, 3, 4, 5, 6, 2, 4, 3, 2, 1;
1, 2, 3, 4, 5, 6, 1, 3, 0, 0, 0, 0;
1, 2, 3, 4, 5, 6, 7, 2, 4, 2, 1, 2, 1;
1, 2, 3, 4, 5, 6, 7, 1, 3, 5, 3, 3, 0, 1;
...
a(8) = 2, = (3,2) of the array indicating that in the sequence 1,2,3,...mod 4, sum of digits of "2" mod 4 = 2.
MATHEMATICA
Flatten@Table[Mod[Total@IntegerDigits[n - i, i], i], {n, 16}, {i, n - 1, 2, -1}] (* Ivan Neretin, Jun 18 2018 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson and Roger L. Bagula, Jul 06 2008
EXTENSIONS
Explanation in the Comments section corrected by Andrey Zabolotskiy, May 18 2016
STATUS
approved