[go: up one dir, main page]

login
A141803
Triangle read by rows derived from generalized Thue-Morse sequences.
10
1, 1, 1, 1, 2, 0, 1, 2, 1, 1, 1, 2, 3, 2, 0, 1, 2, 3, 1, 0, 0, 1, 2, 3, 4, 2, 2, 1, 1, 2, 3, 4, 1, 3, 0, 1, 1, 2, 3, 4, 5, 2, 0, 1, 0, 1, 2, 3, 4, 5, 1, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 2, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 1, 3, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 2, 4, 2, 1, 2, 1, 1, 2, 3, 4, 5, 6, 7, 1, 3, 5, 3, 3, 0, 1
OFFSET
1,5
COMMENTS
Triangle read by rows, antidiagonals of an array composed of generalized Thue-Morse sequences [defined in A010060, comment of Zizka]. For each row of the array, n>0; n-th term of m-th row (m>0) = sum of digits of n in base (m+1), mod (m+1).
Every row of the array starting from the n-th one as well as every row of the triangle starting from the (2*n-1)-th one begins from (1,2,3,...,n).
Row sums = A141804: (1, 2, 3, 5, 8, 7, 15, 15, 18, 22,...).
Row 1 of the array (corresponding to base 2) = A010060 (n>0), rows 2 - 8 are the sequences A053838 - A053844, row 9 = A053837.
LINKS
EXAMPLE
First few rows of the array are:
1, 1, 0, 1, 0, 0, 1, 1,...
1, 2, 1, 2, 0, 2, 0, 1,...
1, 2, 3, 1, 2, 3, 0, 2,...
1, 2, 3, 4, 1, 2, 3, 4,...
1, 2, 3, 4, 5, 1, 2, 3,...
1, 2, 3, 4, 5, 6, 1, 2,...
...
Triangle = antidiagonals of the array:
1;
1, 1;
1, 2, 0;
1, 2, 1, 1;
1, 2, 3, 2, 0;
1, 2, 3, 1, 0, 0;
1, 2, 3, 4, 2, 2, 1;
1, 2, 3, 4, 1, 3, 0, 1;
1, 2, 3, 4, 5, 2, 0, 1, 0;
1, 2, 3, 4, 5, 1, 3, 2, 1, 0;
1, 2, 3, 4, 5, 6, 2, 4, 3, 2, 1;
1, 2, 3, 4, 5, 6, 1, 3, 0, 0, 0, 0;
1, 2, 3, 4, 5, 6, 7, 2, 4, 2, 1, 2, 1;
1, 2, 3, 4, 5, 6, 7, 1, 3, 5, 3, 3, 0, 1;
...
a(8) = 2, = (3,2) of the array indicating that in the sequence 1,2,3,...mod 4, sum of digits of "2" mod 4 = 2.
MATHEMATICA
Flatten@Table[Mod[Total@IntegerDigits[n - i, i], i], {n, 16}, {i, n - 1, 2, -1}] (* Ivan Neretin, Jun 18 2018 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
Explanation in the Comments section corrected by Andrey Zabolotskiy, May 18 2016
STATUS
approved