[go: up one dir, main page]

login
A141780
Numbers n such that A120292(n) is prime.
3
1, 4, 6, 10, 11, 12, 13, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 32, 33, 36, 37, 38, 40, 42, 44, 45, 46, 47, 48, 49, 52, 53, 54, 55, 57, 59, 60, 61, 62, 63, 64, 65, 68, 69, 72, 73, 74, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 93, 94, 95, 99, 100, 102
OFFSET
1,2
MATHEMATICA
Select[Range[200], PrimeQ[Numerator[Abs[(1 - Sum[Prime[k] + 1, {k, 1, #}])/Product[Prime[k] + 1, {k, 1, #}] ]]]&]
PROG
(PARI) isok(n) = isprime(abs(numerator(matdet(matrix(n, n, i, j, if(i==j, prime(i)/(1+prime(i)), 1)))))); \\ Michel Marcus, May 10 2020
CROSSREFS
Cf. A120292 = absolute value of the numerator of the determinant of n X n matrix M with M[i, j] = prime[i]/(1 + prime[i]) if i = j, and 1 otherwise.
Cf. A125716 = numbers n such that A120292(n) = 1.
Cf. A141779 = numbers n such that A120292(n) > 1 and is not prime.
Cf. A141781 = terms of A120292 that are greater than 1 and are not prime; or A120292(A141779).
Sequence in context: A349132 A057670 A171615 * A185002 A110604 A109270
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Jul 04 2008
STATUS
approved