[go: up one dir, main page]

login
A141448
Generalized Pell numbers P(n,5,5).
1
0, 1, 2, 5, 13, 34, 89, 232, 605, 1578, 4116, 10736, 28003, 73041, 190515, 496926, 1296147, 3380779, 8818187, 23000741, 59993521, 156482896, 408159020, 1064613385, 2776862948, 7242974718, 18892067685, 49276745441, 128530009618
OFFSET
0,3
COMMENTS
P(n,2,2) and P(n,2,1) are in A000129.
P(n,3,2) is A116413. P(n,3,1) and P(n,3,3) are A077939.
P(n,4,1) and P(n,4,4) are A103142.
LINKS
Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
E. Kilic and D. Tasci, The generalized Binet formula, representation and sums of the generalizedorder-k Pell numbers, Taiwanese J of Math vol 10 no 6 (2006), 1661-1670.
FORMULA
From R. J. Mathar, Nov 28 2008: (Start)
a(n) = 2*a(n-1) + a(n-2) + a(n-3) + a(n-4) + a(n-5).
G.f.: x/(1-2*x-x^2-x^3-x^4-x^5). (End)
a(n+1) = Sum_(k=1..n, Sum_(r=0..k, binomial(k,r)*2^(k-r)*Sum_(m=0..r,(Sum_(j=0..m, binomial(j,-r+n-m-k-j)*binomial(m,j)))*binomial(r,m)))), a(0)=0, a(1)=1. [Vladimir Kruchinin, May 05 2011]
MAPLE
P := proc(n, k, i) option remember ; if n = 1-i then 1; elif n <= 0 then 0; else 2*P(n-1, k, i)+add(P(n-j, k, i), j=2..k) ; fi ; end: for n from 0 to 40 do printf("%d, ", P(n, 5, 5)) ; od:
MATHEMATICA
CoefficientList[Series[x/(1 - 2*x - x^2 - x^3 - x^4 - x^5), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 13 2012 *)
LinearRecurrence[{2, 1, 1, 1, 1}, {0, 1, 2, 5, 13}, 40] (* Harvey P. Dale, Jan 08 2016 *)
PROG
(Maxima)
a(n):=b(n+1);
b(n):=sum(sum(binomial(k, r)*2^(k-r)*sum((sum(binomial(j, -r+n-m-k-j)*binomial(m, j), j, 0, m))*binomial(r, m), m, 0, r), r, 0, k), k, 1, n); /* Vladimir Kruchinin, May 05 2011 */
(Magma) I:=[0, 1, 2, 5, 13]; [n le 5 select I[n] else 2*Self(n-1)+Self(n-2)+Self(n-3)+Self(n-4)+Self(n-5): n in [1..30]]; // Vincenzo Librandi, Dec 13 2012
CROSSREFS
Sequence in context: A103142 A112844 A027933 * A011783 A001519 A048575
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Aug 07 2008
STATUS
approved