[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141319
INVERTi transform of A141318.
1
2, 3, 8, 46, 252, 1558, 9800, 64115, 428546, 2921527, 20220128, 141746372, 1004278856, 7180301580, 51739691584, 375370204876, 2739615168344, 20100885190508, 148179065429664, 1096966770610372, 8151826588836472, 60787793832205004, 454719634089674432
OFFSET
1,1
COMMENTS
Number of generators of degree n of the primitive Lie algebra of the Hopf algebra of 2-colored planar binary trees.
MAPLE
with(numtheory):
b:= proc(n) option remember;
`if`(n=0, 1, add(add((2^d)*binomial(2*d-2, d-1),
d=divisors(j)) *b(n-j), j=1..n)/n)
end:
a:= proc(n) option remember;
`if`(n<1, -1, -add(a(n-i) *b(i), i=1..n))
end:
seq(a(n), n=1..30); # Alois P. Heinz, Jan 27 2012
MATHEMATICA
b[n_] := b[n] = If[n==0, 1, Sum[Sum[2^d*Binomial[2*d-2, d-1], {d, Divisors[ j]}]*b[n-j], {j, 1, n}]/n]; a[n_] := a[n] = If[n<1, -1, -Sum[a[n-i]* b[i], {i, 1, n}]]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A013208 A094370 A066084 * A369602 A001289 A103045
KEYWORD
nonn
AUTHOR
Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Jun 26 2008
STATUS
approved