[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A140332
Products of two palindromes in base 10.
4
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 27, 28, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 49, 54, 55, 56, 63, 64, 66, 72, 77, 81, 88, 99, 101, 110, 111, 121, 131, 132, 141, 151, 154, 161, 165, 171, 176, 181, 191, 198
OFFSET
1,3
COMMENTS
Geneviève Paquin, p. 5: "Lemma 3.7: a Christoffel word can always be written as the product of two palindromes."
Contains A115683 and A141322 as proper subsets.
LINKS
Geneviève Paquin, On a generalization of Christoffel words: epichristoffel words, arXiv:0805.4174 [math.CO], 2008-2009.
FORMULA
MAPLE
digrev:= proc(n) local L, i; L:= convert(n, base, 10); add(L[-i]*10^(i-1), i=1..nops(L)) end:
N:=3:
Res:= $0..9:
for d from 2 to N do
if d::even then
m:= d/2;
Res:= Res, seq(n*10^m + digrev(n), n=10^(m-1)..10^m-1);
else
m:= (d-1)/2;
Res:= Res, seq(seq(n*10^(m+1)+y*10^m+digrev(n), y=0..9), n=10^(m-1)..10^m-1);
fi
od:
Palis:= [Res]:
Res:= 0:
for i from 2 to nops(Palis) while Palis[i]^2 <= 10^N do
for j from i to nops(Palis) while Palis[i]*Palis[j] <= 10^N do
Res:= Res, Palis[i]*Palis[j];
od od:sort(convert({Res}, list)); # Robert Israel, Jan 06 2020
MATHEMATICA
pal = Select[ Range[0, 200], # == FromDigits@ Reverse@ IntegerDigits@ # &]; Select[ Union[ Times @@@ Tuples[pal, 2]], # <= 200 &] (* Giovanni Resta, Jun 20 2016 *)
CROSSREFS
KEYWORD
easy,nonn,base
AUTHOR
Jonathan Vos Post, May 28 2008
EXTENSIONS
Data corrected by Giovanni Resta, Jun 20 2016
STATUS
approved