[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0)=1; a(3n+1) = a(3n)+1, a(3n+2) = a(3n+1) + a(3n) (=3*A000244), a(3n+3) = a(3n+2) + a(3n) (=A003462(n+2)).
3

%I #22 Nov 03 2018 15:58:22

%S 1,2,3,4,5,9,13,14,27,40,41,81,121,122,243,364,365,729,1093,1094,2187,

%T 3280,3281,6561,9841,9842,19683,29524,29525,59049,88573,88574,177147,

%U 265720,265721,531441,797161,797162,1594323,2391484,2391485,4782969,7174453,7174454

%N a(0)=1; a(3n+1) = a(3n)+1, a(3n+2) = a(3n+1) + a(3n) (=3*A000244), a(3n+3) = a(3n+2) + a(3n) (=A003462(n+2)).

%C Note period 12 for a(n) mod 10.

%H Vincenzo Librandi, <a href="/A140298/b140298.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (-1,-1,3,3,3)

%F From _R. J. Mathar_, Jan 17 2009: (Start)

%F G.f.: (1 + 3*x + 6*x^2 + 6*x^3 + 3*x^4)/((1 + x + x^2)*(1 - 3*x^3)).

%F a(n) = -a(n-1) - a(n-2) + 3*a(n-3) + 3*a(n-4) + 3*a(n-5).

%F a(n) = (3*b(n)-A049347(n))/2 where b(n)=1,1,2,3,3,6,9,9,18,27,27,54,.. = 3*b(n-3).

%F (End)

%o (PARI) Vec((1+3*x+6*x^2+6*x^3+3*x^4)/((1+x+x^2)*(1-3*x^3))+O(x^99)) \\ _Charles R Greathouse IV_, Jun 20 2011

%Y Cf. A107365.

%K nonn,easy

%O 0,2

%A _Paul Curtz_, May 25 2008

%E a(27)-a(43) added by _Andrew Howroyd_, Nov 03 2018