[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A147623
The 3rd Witt transform of A040000.
1
0, 2, 6, 12, 22, 34, 48, 66, 86, 108, 134, 162, 192, 226, 262, 300, 342, 386, 432, 482, 534, 588, 646, 706, 768, 834, 902, 972, 1046, 1122, 1200, 1282, 1366, 1452, 1542, 1634, 1728, 1826, 1926, 2028, 2134, 2242, 2352, 2466, 2582, 2700, 2822, 2946, 3072
OFFSET
0,2
COMMENTS
The 2nd Witt transform of A040000 is represented by A042964.
LINKS
Pieter Moree, The formal series Witt transform, Discr. Math. no. 295 vol. 1-3 (2005) 143-160.
FORMULA
G.f.: 2*x*(1+x)*(1+x^2)/((1-x)^3*(1+x+x^2)).
a(n) = 2*A071619(n).
From G. C. Greubel, Oct 24 2022: (Start)
a(n) = 4*(2 - 2*n + n^2) - a(n-1) - a(n-2).
a(n) = 2*(2*(1 + 3*n^2) - (2*A049347(n) + A049347(n-1)))/9. (End)
MATHEMATICA
CoefficientList[Series[2x(1+x)(1 +x^2)/((1-x)^3 (1+x+x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 14 2012 *)
LinearRecurrence[{2, -1, 1, -2, 1}, {0, 2, 6, 12, 22}, 50] (* Harvey P. Dale, Jul 04 2021 *)
PROG
(Magma) [n le 2 select 1+(-1)^n else 4*(1+(n-2)^2) - Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Oct 24 2022
(SageMath) [2*(2*(1+3*n^2) -(2*chebyshev_U(n, -1/2) +chebyshev_U(n-1, -1/2)))/9 for n in range(41)] # G. C. Greubel, Oct 24 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Nov 08 2008
STATUS
approved