Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Feb 18 2015 18:21:14
%S 1,2,6,19,68,255,1020,4221,18186,80304,364476,1684782,7944156,
%T 37988379,184406508,905147815,4495346570,22527055980,113957354940,
%U 580759868910,2982724210440,15414453711930,80177422383240,419249099692710,2204316120027420,11642676960438000
%N Number of involutions of length 2n+1 which are invariant under the reverse-complement map and have no decreasing subsequences of length 7.
%F a(n) = sum(j,0,n, C(n,j)*C(n-j,floor((n-j)/2))*A000108(floor((j+1)/2)) * A000108(ceiling((j+1)/2))), where C(n,j) = n!/(j!(n-j)!) and A000108(n) = Catalan(n).
%F Recurrence: (n+3)*(n+4)*(n+5)*(2*n+1)*(2*n+3)*a(n) = 8*(2*n+1)*(5*n^3 + 33*n^2 + 67*n + 45)*a(n-1) + 4*(n-1)*(40*n^4 + 216*n^3 + 326*n^2 + 144*n + 45)*a(n-2) - 288*(n-2)*(n-1)*(n+1)*(2*n+5)*a(n-3) - 144*(n-3)*(n-2)*(n-1)*(2*n+3)*(2*n+5)*a(n-4). - _Vaclav Kotesovec_, Feb 18 2015
%F a(n) ~ 6^(n+7/2) / (2 * Pi^(3/2) * n^(7/2)). - _Vaclav Kotesovec_, Feb 18 2015
%t Array[Cat, 21, 0]; For[i = 0, i < 21, ++i, Cat[i] = (1/(i + 1))*Binomial[2*i, i]]; Table[Sum[ Binomial[n, j]*Binomial[n - j, Floor[(n - j)/2]]* Cat[Floor[(j + 1)/2]]*Cat[Ceiling[(j + 1)/2]], {j, 0, n}], {n, 0, 15}]
%K nonn
%O 0,2
%A _Eric S. Egge_, Oct 22 2008
%E More terms from _Vaclav Kotesovec_, Feb 18 2015