[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145557
Numerators of partial sums of a certain alternating series of inverse central binomial coefficients.
6
1, 5, 13, 361, 31, 1193, 31021, 34467, 5273479, 1821745, 220211, 230450795, 2880634987, 1502939987, 5896829249, 12430516053889, 1381168450513, 3271188435379, 2299645470079393, 459929094015491, 819873602375609, 810854992749436603, 311867304903633289
OFFSET
1,2
COMMENTS
See A145558 for the denominators divided by 2.
The limit of the rational partial sums r(n), defined below, for n->infinity is 2*(2*phi-1)*log(phi)/5, with phi:=(1+sqrt(5))/2 (golden section). This limit is approximately 0.4304089412.
LINKS
C. Elsner, On recurrence formulas for sums involving binomial coefficients, Fib. Q., 43,1 (2005), 31-45. See Eq. 12, p. 39.
M. L. Glasser, A Generalized Apery Series, Journal of Integer Sequences, Vol. 15 (2012), #12.4.3.
Renzo Sprugnoli, Sums of reciprocals of the central binomial coefficients, Integers: electronic journal of combinatorial number theory, 6 (2006) #A27, 1-18.
A. J. van der Poorten, Some wonderful formulas...Footnote to Apery's proof of the irrationality of zeta(3), Séminaire Delange-Pisot-Poitou. Théorie des nombres, tome 20, no. 2 (1978-1979), exp, no. 29, pp. 1-7, pp. 29-02.
FORMULA
a(n) = numerator(r(n)) with the rationals (in lowest terms) r(n):=sum(((-1)^(k+1))/(k*binomial(2*k,k)),k=1..n).
EXAMPLE
Rationals r(n) (in lowest terms): [1/2, 5/12, 13/30, 361/840, 31/72, 1193/2772, 31021/72072,...].
MAPLE
R:= 0;
for n from 1 to 100 do
R:= R + (-1)^(n+1)/(n*binomial(2*n, n));
a[n]:=numer(R);
od:
seq(a[i], i=1..100); # Robert Israel, Jun 16 2014
PROG
(PARI) vector(50, n, numerator(sum(k=1, n, (-1)^(k+1)/(k*binomial(2*k, k))))) \\ Michel Marcus, Oct 13 2014
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Oct 17 2008
STATUS
approved