[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of x/((1 - x - x^4)*(1 - x)^4).
5

%I #9 Jul 31 2015 21:41:53

%S 0,1,5,15,35,71,132,231,386,622,974,1491,2241,3318,4852,7023,10080,

%T 14367,20359,28712,40332,56470,78853,109865,152797,212192,294321,

%U 407840,564697,781384,1080665,1493961,2064642,2852571,3940376,5442107,7515185

%N Expansion of x/((1 - x - x^4)*(1 - x)^4).

%C The coefficients of the recursion for a(n) are given by the 5th row of A145152.

%H Harvey P. Dale, <a href="/A145133/b145133.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (5, -10, 10, -4, -3, 6, -4, 1).

%F a(n) = 5a(n-1) -10a(n-2) +10a(n-3) -4a(n-4) -3a(n-5) +6a(n-6) -4a(n-7) +a(n-8).

%e a(9) = 622 = 5*386 -10*231 +10*132 -4*71 -3*35 +6*15 -4*5 +1.

%p col:= proc(k) local l, j, M, n; l:= `if` (k=0, [1, 0, 0, 1], [seq (coeff ( -(1-x-x^4) *(1-x)^(k-1), x, j), j=1..k+3)]); M:= Matrix (nops(l), (i,j)-> if i=j-1 then 1 elif j=1 then l[i] else 0 fi); `if` (k=0, n->(M^n)[2,3], n->(M^n)[1,2]) end: a:= col(5): seq (a(n), n=0..40);

%t CoefficientList[Series[x/((1-x-x^4)*(1-x)^4),{x,0,40}],x] (* or *) LinearRecurrence[{5,-10,10,-4,-3,6,-4,1},{0,1,5,15,35,71,132,231},40] (* _Harvey P. Dale_, Oct 24 2011 *)

%o (PARI) Vec(1/((1 - x - x^4)*(1 - x)^4)+O(x^99)) \\ _Charles R Greathouse IV_, Sep 24 2012

%Y 5th column of A145153. Cf. A145152.

%K nonn,easy

%O 0,3

%A _Alois P. Heinz_, Oct 03 2008