[go: up one dir, main page]

login
A144473
A triangle sequence of determinants: a(n)=If[Mod[n, 3] == 0, 1, If[Mod[n, 3] == 1, -1, If[Mod[n, 3] == 2, 0]]]; b(n,m)=If[m < n && Mod[n, 3] == 0, 0, If[m < n && Mod[n, 3] == 1, 0, If[m < n && Mod[n, 3] == 2 && Mod[n, 2] == 0, 1, If[m < n && Mod[n, 3] == 2 && Mod[n, 2] == 1, -1, If[m == n, -1, 0]]]]]; M={{a(m), b(n, m)}, {a(n), b(n, n)}}; t(n,m)=Det[M].
0
-1, -1, 1, -1, 1, 0, -1, 1, 0, -1, -1, 1, 0, -1, 1, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, -1, 1, 0, -1, 1, 0, -1, 1, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 1, 0, -1
OFFSET
1,1
COMMENTS
Row sums are:{-1, 0, 0, -1, 0, 0, -1, 0, 0, -1}.
FORMULA
a(n)=If[Mod[n, 3] == 0, 1, If[Mod[n, 3] == 1, -1, If[Mod[n, 3] == 2, 0]]]; b(n,m)=If[m < n && Mod[n, 3] == 0, 0, If[m < n && Mod[n, 3] == 1, 0, If[m < n && Mod[n, 3] == 2 && Mod[n, 2] == 0, 1, If[m < n && Mod[n, 3] == 2 && Mod[n, 2] == 1, -1, If[m == n, -1, 0]]]]]; M={{a(m), b(n, m)}, {a(n), b(n, n)}}; t(n,m)=Det[M].
EXAMPLE
{-1},
{-1, 1},
{-1, 1, 0},
{-1, 1, 0, -1},
{-1, 1, 0, -1, 1},
{-1, 1, 0, -1, 1, 0},
{-1, 1, 0, -1, 1, 0, -1},
{-1, 1, 0, -1, 1, 0, -1, 1},
{-1, 1, 0, -1, 1, 0, -1, 1, 0},
{-1, 1, 0, -1, 1, 0, -1, 1, 0, -1}
MATHEMATICA
Clear[a, b, t, n, m] a[n_] := If[Mod[n, 3] == 0, 1, If[Mod[n, 3] == 1, -1, If[Mod[n, 3] == 2, 0]]]; b[n, m_] := If[m < n && Mod[n, 3] == 0, 0, If[m < n && Mod[n, 3] == 1, 0, If[m < n && Mod[n, 3] == 2 && Mod[n, 2] == 0, 1, If[m < n && Mod[n, 3] == 2 && Mod[n, 2] == 1, -1, If[m == n, -1, 0]]]]]; M := {{a[m], b[n, m]}, {a[n], b[n, n]}}; t[n_, m_] := Det[M]; Table[Table[t[n, m], {m, 0, n - 1}], {n, 1, 10}]; Flatten[%]
CROSSREFS
Sequence in context: A071038 A131522 A221641 * A011750 A340375 A010055
KEYWORD
sign,uned
AUTHOR
STATUS
approved