[go: up one dir, main page]

login
A144050
Primes p such that p-2, p-6, p-12, p-20, p-30, and p-42 are prime.
1
73, 109, 113173, 340939, 348463, 669679, 752293, 855739, 1107793, 1225129, 1416073, 3312193, 3319639, 3586909, 3804949, 4252123, 4867339, 4956823, 5327899, 5647513, 6057199, 6264373, 6929443, 8248069, 8422243, 8688613, 9189139, 10016563, 10499329, 10671319
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..1000
MATHEMATICA
lst={}; Do[p1=Prime[n]; If[PrimeQ[p2=p1-2]&&PrimeQ[p3=p1-6]&&PrimeQ[p4=p1-12]&&PrimeQ[p5=p1-20]&&PrimeQ[p6=p1-30]&&PrimeQ[p7=p1-42], AppendTo[lst, p1]], {n, 10^5}]; lst
Select[Prime[Range[9, 710000]], AllTrue[#+{-2, -6, -12, -20, -30, -42}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jun 01 2018 *)
PROG
(PARI) p=2; q=3; forprime(r=5, 4e9, if(p+6==r&&isprime(r-12)&&isprime(r-20)&&isprime(r-30)&&isprime(r-42), print1(r", ")); p=q; q=r) \\ Charles R Greathouse IV, Oct 04 2011
CROSSREFS
Sequence in context: A238679 A157120 A118220 * A087878 A142196 A215963
KEYWORD
nonn
AUTHOR
STATUS
approved