[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133691
Expansion of (1 - (phi(-q) * phi(q^2))^2) / 4 in powers of q where phi() is a Ramanujan theta function.
1
1, -2, 4, -6, 6, -8, 8, -6, 13, -12, 12, -24, 14, -16, 24, -6, 18, -26, 20, -36, 32, -24, 24, -24, 31, -28, 40, -48, 30, -48, 32, -6, 48, -36, 48, -78, 38, -40, 56, -36, 42, -64, 44, -72, 78, -48, 48, -24, 57, -62, 72, -84, 54, -80, 72, -48, 80, -60, 60, -144
OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of (1 - (eta(q)^2 * eta(q^4)^5 / (eta(q^2)^3 * eta(q^8)^2))^2) / 4 in powers of q.
a(n) is multiplicative with a(2) = -2, a(2^e) = -6 if e>1, a(p^e) = (p^(e+1) - 1) / (p - 1) if p>2.
a(n) = -4 * A133690(n) = -(-1)^n * A111973(n). a(2*n) = -2 * A046897(n). a(2*n + 1) = A008438(n). a(4*n) = -6 * A000593(n). a(4*n + 1) = A112610(n). a(4*n + 3) = 4 * A097723(n).
Dirichlet g.f.: zeta(s) * zeta(s-1) * (1 - 5/2^s + 1/2^(2*s-1) + 1/2^(3*s-3)). - Amiram Eldar, Oct 28 2023
EXAMPLE
G.f. = q - 2*q^2 + 4*q^3 - 6*q^4 + 6*q^5 - 8*q^6 + 8*q^7 - 6*q^8 + 13*q^9 - ...
MATHEMATICA
a[ n_] := Which[ n < 1, 0, OddQ[n], DivisorSigma[ 1, n], True, -2 DivisorSum[ n/2, # Boole[Mod[#, 4] > 0] &]]; (* Michael Somos, Oct 30 2015 *)
a[ n_] := SeriesCoefficient[ (1 - (EllipticTheta[ 4, 0, q] EllipticTheta[ 3, 0, q^2])^2) / 4, {q, 0, n}]; (* Michael Somos, Oct 30 2015 *)
PROG
(PARI) {a(n) = if( n<1, 0, n%2, sigma(n), -2 * sumdiv(n/2, d, if(d%4, d)))};
KEYWORD
sign,easy,mult
AUTHOR
Michael Somos, Sep 20 2007
STATUS
approved