[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133444
a(n)=sum{k=0..n, C(n,floor(k/2))*(-1)^k*4^(n-k)}.
1
1, 3, 14, 57, 246, 1038, 4424, 18777, 79846, 339258, 1442004, 6128202, 26045436, 110691948, 470442924, 1999378137, 8497365126, 36113785698, 153483619604, 652305322542, 2772297736276, 11782265148228, 50074627320864, 212817165231882, 904472953925596
OFFSET
0,2
COMMENTS
Hankel transform is 5^n . Second binomial transform is A076036 .
LINKS
FORMULA
a(n)=Sum{k, 0<=k<=n} A053121(n,k)*A015521(k+1) = (-1)^n*A127363(n) . G.f.: (1/sqrt(1-4x^2))(1-xc(x^2))/(1-4x*c(x^2)), where c(x) is the g.f. of Catalan numbers A000108 .
Recurrence: 4*n*a(n) = (17*n-8)*a(n-1) + 2*(8*n+1)*a(n-2) - 68*(n-2)*a(n-3) . - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 3*17^n/4^(n+1) . - Vaclav Kotesovec, Oct 20 2012
MATHEMATICA
Table[Sum[Binomial[n, Floor[k/2]]*(-1)^k*4^(n-k), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 20 2012 *)
CROSSREFS
Sequence in context: A135926 A015523 A127363 * A126875 A110526 A319857
KEYWORD
nonn
AUTHOR
Philippe Deléham, Nov 26 2007
EXTENSIONS
More terms from Vincenzo Librandi, May 25 2013
STATUS
approved