[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132690
Triangle T, read by rows, where row n+1 of T = row n of T^(-n) with appended '1' for n>=0 with T(0,0)=1.
4
1, 1, 1, -1, 1, 1, 5, -2, 1, 1, -43, 12, -3, 1, 1, 527, -118, 22, -4, 1, 1, -8396, 1605, -250, 35, -5, 1, 1, 164672, -27816, 3810, -455, 51, -6, 1, 1, -3835910, 585046, -72492, 7735, -749, 70, -7, 1, 1, 103464895, -14459138, 1649634, -161336, 14098, -1148, 92, -8, 1, 1
OFFSET
0,7
FORMULA
The matrix inverse T^-1 equals triangle A101479 (signed).
EXAMPLE
Triangle begins:
1;
1, 1;
-1, 1, 1;
5, -2, 1, 1;
-43, 12, -3, 1, 1;
527, -118, 22, -4, 1, 1;
-8396, 1605, -250, 35, -5, 1, 1;
164672, -27816, 3810, -455, 51, -6, 1, 1;
-3835910, 585046, -72492, 7735, -749, 70, -7, 1, 1;
103464895, -14459138, 1649634, -161336, 14098, -1148, 92, -8, 1, 1; ...
Matrix inverse T^-1 is a signed version of triangle A101479:
1;
-1, 1;
2, -1, 1;
-9, 3, -1, 1;
70, -18, 4, -1, 1;
-795, 170, -30, 5, -1, 1;
11961, -2220, 335, -45, 6, -1, 1; ...
Matrix inverse square T^-2 begins:
1;
-2, 1;
5, -2, 1; <-- row 3 of T
-23, 7, -2, 1;
175, -43, 9, -2, 1; ...
where row 3 of T = row 2 of T^-2 with appended '1'.
Matrix inverse cube T^-3 begins:
1;
-3, 1;
9, -3, 1;
-43, 12, -3, 1; <-- row 4 of T
324, -76, 15, -3, 1; ...
where row 4 of T = row 3 of T^-3 with appended '1'.
Matrix inverse 4th power T^-4 begins:
1;
-4, 1;
14, -4, 1;
-70, 18, -4, 1;
527, -118, 22, -4, 1; <-- row 4 of T
-5624, 1107, -178, 26, -4, 1; ...
where row 5 of T = row 4 of T^-4 with appended '1'.
PROG
(PARI) {T(n, k)=local(A=Mat(1), B); for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=1, B[i, j]=(A^(-(i-2)))[i-1, j]); )); A=B); return( ((A)[n+1, k+1]))}
CROSSREFS
Sequence in context: A197419 A029764 A136301 * A326922 A343678 A089086
KEYWORD
tabl,sign
AUTHOR
Paul D. Hanna, Aug 25 2007
STATUS
approved