[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132683
a(n) = binomial(2^n + n, n).
13
1, 3, 15, 165, 4845, 435897, 131115985, 138432467745, 525783425977953, 7271150092378906305, 368539102493388126164865, 68777035446753808820521420545, 47450879627176629761462147774626305
OFFSET
0,2
LINKS
FORMULA
a(n) = [x^n] 1/(1-x)^(2^n + 1).
G.f.: Sum_{n>=0} (-log(1 - 2^n*x))^n / ((1 - 2^n*x)*n!). - Paul D. Hanna, Feb 25 2009
a(n) ~ 2^(n^2) / n!. - Vaclav Kotesovec, Jul 02 2016
EXAMPLE
From Paul D. Hanna, Feb 25 2009: (Start)
G.f.: A(x) = 1 + 3*x + 15*x^2 + 165*x^3 + 4845*x^4 + 435897*x^5 + ...
A(x) = 1/(1-x) - log(1-2x)/(1-2x) + log(1-4x)^2/((1-4x)*2!) - log(1-8x)^3/((1-8x)*3!) +- ... (End)
MAPLE
A132683:= n-> binomial(2^n +n, n); seq(A132683(n), n=0..20); # G. C. Greubel, Mar 14 2021
MATHEMATICA
Table[Binomial[2^n+n, n], {n, 0, 15}] (* Vaclav Kotesovec, Jul 02 2016 *)
PROG
(PARI) a(n)=binomial(2^n+n, n)
(PARI) {a(n)=polcoeff(sum(m=0, n, (-log(1-2^m*x))^m/((1-2^m*x +x*O(x^n))*m!)), n)} \\ Paul D. Hanna, Feb 25 2009
(Sage) [binomial(2^n +n, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
(Magma) [Binomial(2^n +n, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
CROSSREFS
Sequences of the form binomial(2^n +p*n +q, n): A136556 (0,-1), A014070 (0,0), A136505 (0,1), A136506 (0,2), A060690 (1,-1), this sequence (1,0), A132684 (1,1), A132685 (2,0), A132686 (2,1), A132687 (3,-1), A132688 (3,0), A132689 (3,1).
Cf. A136555.
Cf. A066384. - Paul D. Hanna, Feb 25 2009
Sequence in context: A015013 A269694 A153280 * A059386 A077792 A153079
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 26 2007
STATUS
approved