[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132625
Triangle T, read by rows, where row n+1 of T = row n of T^(2^n) with appended '1' for n>=0 with T(0,0)=1.
3
1, 1, 1, 2, 1, 1, 14, 4, 1, 1, 336, 60, 8, 1, 1, 25836, 2960, 248, 16, 1, 1, 6251504, 454072, 24800, 1008, 32, 1, 1, 4838830976, 216266368, 7603952, 202944, 4064, 64, 1, 1, 12344615283200, 328381917376, 7190266752, 124427232, 1641856, 16320, 128, 1, 1
OFFSET
0,4
COMMENTS
Let R_{n} equal row n of square array A136555, where A136555(n,k) = C(2^k + n-1, k); this triangle transforms rows of A136555: T * R_{n} = R_{n+1} for n>=0.
EXAMPLE
Triangle begins:
1;
1, 1;
2, 1, 1;
14, 4, 1, 1;
336, 60, 8, 1, 1;
25836, 2960, 248, 16, 1, 1;
6251504, 454072, 24800, 1008, 32, 1, 1;
4838830976, 216266368, 7603952, 202944, 4064, 64, 1, 1;
12344615283200, 328381917376, 7190266752, 124427232, 1641856, 16320, 128, 1, 1; ...
GENERATE T FROM MATRIX POWERS OF T.
Matrix power T^4 begins:
1;
4, 1;
14, 4, 1; <-- row 3 of T
96, 22, 4, 1;
1941, 316, 38, 4, 1;
129206, 14185, 1140, 70, 4, 1; ...
where row 3 of T = row 2 of T^(2^2) with appended '1'.
Matrix power T^8 begins:
1;
8, 1;
44, 8, 1;
336, 60, 8, 1; <-- row 4 of T
6062, 872, 92, 8, 1;
345596, 35734, 2712, 156, 8, 1; ...
where row 4 of T = row 3 of T^(2^3) with appended '1'.
Matrix power T^16 begins:
1;
16, 1;
152, 16, 1;
1504, 184, 16, 1;
25836, 2960, 248, 16, 1; <-- row 5 of T
1197304, 109500, 7408, 376, 16, 1; ...
where row 5 of T = row 4 of T^(2^4) with appended '1'.
Alternate generating method:
RoW 3: start with '1' followed by (2^2 - 1) zeros;
take partial sums and append (2^1 - 1) zero;
take partial sums twice more:
(1), 0, 0, 0;
1, 1, 1, (1), 0;
1, 2, 3, 4, (4);
1, 3, 6, 10, (14);
the final nonzero terms form row 3: [14, 4, 1, 1].
Row 4: start with '1' followed by (2^3 - 1) zeros;
take partial sums and append (2^2 - 1) zeros;
take partial sums and append (2^1 - 1) zero;
take partial sums twice more:
(1), 0, 0, 0, 0, 0, 0, 0;
1, 1, 1, 1, 1, 1, 1, (1), 0, 0, 0;
1, 2, 3, 4, 5, 6, 7, 8, 8, 8, (8), 0;
1, 3, 6, 10, 15, 21, 28, 36, 44, 52, 60, (60);
1, 4, 10, 20, 35, 56, 84, 120, 164, 216, 276, (336);
the final nonzero terms form row 4: [336, 60, 8, 1, 1].
Continuing in this way produces all the rows of this triangle.
PROG
(PARI) T(n, k)=local(A=Mat(1), B); for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i, B[i, j]=1, B[i, j]=(A^(2^(i-2)))[i-1, j]); )); A=B); return( ((A)[n+1, k+1]))
(PARI) /* Generate using partial sums method (faster) */ T(n, k)=local(A=vector(n+1), p); A[1]=1; for(j=1, n-k, p=2^n-2^(n-j)-j; A=Vec((Polrev(A)+x*O(x^p))/(1-x))); A[p+1]
(PARI) /* As Row Transformation of Square Array A136555(n, k) = C(2^k + n-1, k): */ T(n, k)=local(M=matrix(n+2, n+2, r, c, binomial(2^(c-1)+r-2, c-1)), N=matrix(n+1, n+1, r, c, M[r, c]), P=matrix(n+1, n+1, r, c, M[r+1, c]), R=P~*N~^-1); R[n+1, k+1]
CROSSREFS
Cf. variants: A101479, A132610, A132615; columns: A132626, A132627.
Cf. A136555.
Sequence in context: A337514 A054505 A132610 * A164792 A132318 A078089
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Aug 25 2007, Jan 07 2008
STATUS
approved