[go: up one dir, main page]

login
A132335
G.f.: A(x) = (A_1)^3 where A_1 = 1/[1 - x*(A_2)^3], A_2 = 1/[1 - x^2*(A_3)^3], A_3 = 1/[1 - x^3*(A_4)^3], ... A_n = 1/[1 - x^n*(A_{n+1})^3] for n>=1.
2
1, 3, 6, 19, 51, 129, 361, 939, 2433, 6376, 16362, 41970, 107206, 271881, 687999, 1733695, 4352877, 10899381, 27208492, 67745649, 168275466, 417023747, 1031321451, 2545496316, 6271166097, 15423190770, 37869769518, 92842013185
OFFSET
0,2
COMMENTS
Self-convolution cube of A132334.
PROG
(PARI) {a(n)=local(A=1+x*O(x^n)); for(j=0, n-1, A=1/(1-x^(n-j)*A^3 +x*O(x^n))); polcoeff(A^3, n)}
CROSSREFS
Cf. A132334; A132333 (variant).
Sequence in context: A179277 A129417 A369553 * A148569 A024998 A148570
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 20 2007
STATUS
approved