OFFSET
0,1
LINKS
Richard J. McIntosh, Some Asymptotic Formulae for q-Hypergeometric Series, Journal of the London Mathematical Society, Vol. 51, No. 1 (1995), pp. 120-136; alternative link.
FORMULA
Equals exp(-Sum_{n>0} sigma_1(n)/(n*9^n)) = exp(-Sum_{n>0} A000203(n)/(n*9^n)).
Equals Sum_{n>=0} A010815(n)/9^n. - R. J. Mathar, Mar 04 2009
From Amiram Eldar, May 09 2023: (Start)
Equals sqrt(Pi/log(3)) * exp(log(3)/12 - Pi^2/(12*log(3))) * Product_{k>=1} (1 - exp(-2*k*Pi^2/log(3))) (McIntosh, 1995).
Equals Sum_{n>=0} (-1)^n/A027877(n). (End)
EXAMPLE
0.8765603540359642058360198...
MATHEMATICA
digits = 103; NProduct[1-1/9^k, {k, 1, Infinity}, NProductFactors -> 100, WorkingPrecision -> digits+3] // N[#, digits+3]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
RealDigits[QPochhammer[1/9], 10, 100][[1]] (* Amiram Eldar, May 09 2023 *)
PROG
(PARI) prodinf(k=1, 1 - 1/(9^k)) \\ Amiram Eldar, May 09 2023
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Hieronymus Fischer, Aug 14 2007
STATUS
approved